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Abstract
Voice assistants like Amazon’s Alexa, Google’s Assistant,
Tencent’s Xiaowei, or Apple’s Siri, have become the primary
(voice) interface in smart speakers that can be found in mil-
lions of households. For privacy reasons, these speakers an-
alyze every sound in their environment for their respective
wake word like “Alexa,” “Jiǔsì’èr líng,” or “Hey Siri,” before
uploading the audio stream to the cloud for further processing.
Previous work reported on examples of an inaccurate wake
word detection, which can be tricked using similar words or
sounds like “cocaine noodles” instead of “OK Google.”

In this paper, we perform a comprehensive analysis of such
accidental triggers, i. e., sounds that should not have triggered
the voice assistant, but did. More specifically, we automate
the process of finding accidental triggers and measure their
prevalence across 11 smart speakers from 8 different man-
ufacturers using everyday media such as TV shows, news,
and other kinds of audio datasets. To systematically detect
accidental triggers, we describe a method to artificially craft
such triggers using a pronouncing dictionary and a weighted,
phone-based Levenshtein distance. In total, we have found
hundreds of accidental triggers. Moreover, we explore poten-
tial gender and language biases and analyze the reproducibil-
ity. Finally, we discuss the resulting privacy implications of
accidental triggers and explore countermeasures to reduce
and limit their impact on users’ privacy. To foster additional
research on these sounds that mislead machine learning mod-
els, we publish a dataset of more than 350 verified triggers as
a research artifact.

1 Introduction

In the past few years, we have observed a huge growth in
the popularity of voice assistants, especially in the form of
smart speakers. Most major technology companies, among
them Amazon, Baidu, Google, Apple, Tencent, and Xiaomi,
have developed an assistant. Amazon is among the most pop-
ular brands on the market: the company reported in 2019

that it had sold more than 100 million devices with Alexa
on board; there were more than 150 products that support
this voice assistant (e. g., smart speakers, soundbars, head-
phones, etc.) [10]. Especially smart speakers are on their way
of becoming a pervasive technology, with several security
and privacy implications due to the way these devices operate:
they continuously analyze every sound in their environment in
an attempt to recognize a so-called wake word such as “Alexa,”
“Echo,” “Hey Siri,” or “Xiǎo dù xiǎo dù.” If and only if a wake
word is detected, the device starts to record the sound and
uploads it to a remote server, where it is transcribed, and the
detected word sequence is interpreted as a command. This
mode of operation is mainly used due to privacy concerns,
as the recording of all (potentially private) communication
and processing this data in the cloud would be too invasive.
Furthermore, the limited computing power and storage on the
speaker prohibits a full analysis on the device itself. Hence,
the recorded sound is sent to the cloud for analysis once a
wake word is detected.

Unfortunately, the precise detection of wake words is a
challenging task with a typical trade-off between usability
and security: manufacturers aim for a low false acceptance
and false rejection rate [56], which promotes a certain wig-
gle room for an adversary. As a result, it happens that these
smart speakers trigger even if the wake word has not been
uttered. First exploratory work on the error patterns of voice-
driven user input has been done by Vaidya et al. [69]. In their
2015 paper, the authors explain how Google’s voice assistant,
running on a smartphone, misinterprets “cocaine noodles”
as “OK Google” and they describe a way to exploit this be-
havior to execute unauthorized commands such as sending a
text, calling a number, or opening a website. Later, Kumar et
al. [41] presented an attack, called skill squatting, that lever-
ages transcription errors of a list of words sounding similar
to existing Alexa skills. Their attack exploits the imperfect
transcription of the words by the Amazon API and routes
users to malicious skills with similar-sounding names. A sim-
ilar attack, in which the adversary exploits the way a skill is
invoked, has been described by Zhang et al. [75].
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Such research results utilize instances of what we call an
accidental trigger: a sound that a voice assistant mistakes
for its wake word. Privacy-wise, this can be fatal, as it will
induce the voice assistant to start a recording and stream it
to the cloud. Inadvertent triggering of smart speakers and
the resulting accidentally captured conversations are seen
by many as a privacy threat [14, 21, 46]. When the media
reported in summer 2019 that employees of the manufacturer
listen to voice recordings to transcribe and annotate them,
this led to an uproar [18, 71]. As a result, many companies
paused these programs and no longer manually analyze the
recordings [23, 33, 43].

In this paper, we perform a systematic and comprehensive
analysis of accidental triggers to understand and elucidate this
phenomenon in detail. To this end, we propose and implement
an automated approach for systematically evaluating the resis-
tance of smart speakers to such accidental triggers. We base
this evaluation on candidate triggers carefully crafted from a
pronouncing dictionary with a novel phonetic distance mea-
sure, as well as on available AV media content and bring it to
bear on a range of current smart speakers. More specifically, in
a first step, we analyze vendor’s protection mechanisms such
as cloud-based wake word verification systems and acoustic
fingerprints, used to limit the impact of accidental triggers.
We carefully evaluate how a diverse set of 11 smart speakers
from 8 manufacturers behaves in a simulated living-room-like
scenario with different sound sources (e. g., TV shows, news,
and professional audio datasets). We explore the feasibility
of artificially crafting accidental triggers using a pronouncing
dictionary and a weighted, phone-based Levenshtein distance
metric and benchmark the robustness of the smart speakers
against such crafted accidental triggers. We found that a dis-
tance measure that considers phone-dependent weights is
more successful in describing potential accidental triggers.
Based on this measure, we crafted 1-, 2-, and 3-grams as po-
tential accidental triggers, using a TTS service and were able
to find accidental triggers for all tested smart speakers in a
fully automated way.

Finally, we give recommendations and discuss countermea-
sures to reduce the number of accidental triggers or limit their
impact on users’ privacy.

To summarize, we make the following key contributions:

1. By reverse-engineering the communication channel of an
Amazon Echo, we are able to provide novel insights on
how commercial companies deal with such problematic
triggers in practice.

2. We develop a fully automated measurement setup that en-
ables us to perform an extensive study of the prevalence
of accidental triggers for 11 smart speakers from 8 man-
ufacturers. We analyze a diverse set of audio sources,
explore potential gender and language biases, and ana-
lyze the identified triggers’ reproducibility.

3. We introduce a method to synthesize accidental triggers
with the help of a pronouncing dictionary and a weighted
phone-based Levenshtein distance metric. We demon-
strate that this method enables us to find new accidental
triggers in a systematic way and argue that this method
can benchmark the robustness of smart speakers.

4. We publish a dataset of more than 350 accidental triggers
to foster future research on this topic.1

2 Understanding Accidental Triggers

In this section, we provide the required background on wake
word detection. Furthermore, we describe how Amazon deals
with accidental triggers and how we analyzed and reverse
engineered an Amazon Echo speaker. Finally, we provide an
overview of smart speaker privacy settings. In general, acci-
dental triggers are the consequence of the trade-off between
specificity and sensitivity, namely the false rejection and the
false acceptance rate. Whenever a wake word recognizer is
trained, the system aims to minimize both of these errors.

2.1 Wake Word Recognition
To enable natural communication between the user and the
device, automatic speech recognition (ASR) systems built
into smart speakers rely on a far-field voice-based activa-
tion. In contrast to a push-to-talk model, where speech
recognition is only active after a physical button is pressed,
smart speakers continuously record their surroundings to al-
low hands-free use. After detecting a specific wake word,
also known as hotword or keyword, the smart speaker starts
to respond. The wake word recognition system is often a
lightweight DNN-based ASR system, limited to a few desig-
nated words [6, 29, 73]. All these systems use a small DNN,
e.g., in the form of a TDNN, to map the audio input into a
representation that describes the likelihoods of all units (e.g. a
phone) of the wake word in each frame. Based on this DNN
output, the system decides on the presence of the wake word,
for which purpose different strategies may be used. Either
a graph search is conducted through the keyword’s phone
sequences given the DNN output [6, 29] or the likelihoods of
the phones are combined to a score. To guarantee its respon-
siveness, the recognition runs locally and is therefore limited
by the computational power and storage of the speaker. For
example, we found the Computer wake word model for an
Amazon Echo speaker to be less than 2 MB in size, running
on a 1GHz ARM Cortex-A8 processor. The speaker uses
about 50% of its CPU time for the wake word recognition
process. In addition to the wake word, the model also detects a
stop signal (“Stop”) to interrupt the currently running request.
Especially when used in environments with ambient noise

1They are available at https://unacceptable-privacy.github.io,
where we also provide example videos.
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from external sources such as TVs, a low false acceptance
and false rejection rate is much harder to achieve for these
systems [56].

The device will only transmit data to the respective server
after the wake word has been recognized locally. Hence, ac-
tivating the wake word by an accidental trigger will lead to
the upload of potentially sensitive and private audio data, and
should, therefore, be avoided as far as possible.

In some cases, a speaker misinterprets another word or
sound as its wake word. If the misinterpreted word is unre-
lated to the configured wake word, we refer to this event as
an accidental trigger. To limit the consequences of such false
wakes, vendors started to augment the local wake word recog-
nition with a cloud-based wake word verification. Moreover,
there is an acoustic fingerprint-based mechanism in place that
prevents a speaker from triggering when listening to certain
audio sequences observed in TV commercials and similar
audio sources. We describe both of these mechanisms in more
detail in Section 2.4.

2.2 Voice Profiles, Sensitivity, and Audible
Feedback

Voice profiles, also referred to as “Voice Match” or “Rec-
ognize My Voice” feature, are a convenience component of
modern voice assistants [72]. The requisite voice training was
introduced with iOS 9 (2015), and Android 8 (2017) to build
context around questions and deliver personalized results. On
smartphones, a voice profile helps to recognize the user bet-
ter [7]. Vendors explain that without a profile, queries are
simply considered to be coming from guests and thus will not
include personal results [26].

In contrast to voice assistants on phones, smart speakers
are intended to be activated by third parties, such as friends
and visitors. Thus, voice profiles do not influence whether
a smart speaker is activated or not when the wake word is
recognized. In shared, multi-user environments, voice profiles
enable voice assistants to tell users apart and deliver personal-
ized search results, music playlists, and communication. The
feature is also not meant for security, as a similar voice or
recording can trick the system [24]. In our experiments, voice
profiles were not enabled or used.

In April 2020, Google introduced a new feature that allows
users to adjust the wake word’s responsiveness to limit the
number of accidental activations [25]. In our experiments, we
used the “Default” sensitivity. In a short test, we found that
this “Default [0]” setting caused 30 accidental wake ups, while
choosing the most private setting, called “Least Sensitive [-
2],” resulted in 28 (-7%), thus only reducing the number of
accidental triggers by 2. In contrast, the least private mode,
called “Most Sensitive [+2],” responded to 44 (+47%) times,
showing that this new feature is more useful for increasing
the responsiveness “particularly in a noisy environment,” [27]
and has almost no positive impact on users’ privacy.

Another potential privacy protection feature is to play a
chime, sound effect, or another audible tone when the wake
word is detected, to notify the user about the potential (mis-)
activation. On smartphones, this audible feedback is enabled
by default. However, smart speakers do not play a sound, but
instead activate their LED activity indicator as a visual cue.
For people with visual impairments, some smart speakers
include an accessibility setting to enable the playback of such
an auditory feedback [28].

2.3 Alexa Internals
In the following, we describe how we analyzed and reverse
engineered an Amazon Echo speaker (1st Gen.). The speaker
was bought in February 2017 and was equipped with firmware
version 647 588 720 from October 2019.

Rooting To obtain root access on an Amazon Echo speaker,
we follow a method described by Clinton et al. [16] that
was later refined by Barnes [9]. To decrypt and analyze the
speaker’s communication with the Alexa API, we inject a
shared object that dumps all negotiated pre-master secrets
into a file, which we later use to decrypt the TLS protected
traffic recorded in the PCAP files using the tool Wireshark.

From the Wake Word to the Response Echo’s ASR en-
gine is called Pryon and started from a fork of the open-source
speech recognition toolkit Kaldi [55]. There are four wake
words models, i. e., Alexa, Computer, Echo, and Amazon, di-
vided by the two different device types doppler and pancake
(Echo and Echo Dot), and four different languages/regions (en-
US, es-US, en-GB, and de-DE). The local automatic speech
recognition daemon, ASRD, uses Pryon to detect the con-
figured wake word. The ASRD represents its certainty for
recognizing the wake word with a classifier score between 0.0
and 1.0. The communication between the Echo and Amazon’s
cloud relies on the latency-optimized SPDY protocol.

The following six steps are relevant: 1© In normal use, a
wake word score above 0.57 is categorized as an “Accept.” A
score between 0.1 (notification threshold) and 0.57 will be
categorized as a “NearMiss.” The threshold for an accept is
lowered to 0.43, if the device is playing music. A near miss
will not trigger the LED indicator, and no audio will be pro-
cessed or uploaded to the Amazon cloud. 2© In contrast, an
“Accept” will activate the encoding of the currently recorded
audio. The LED indicator turns on and starts to indicate the es-
timated direction of the speech source. Moreover, the ASRD
informs the cloud about an upcoming audio stream, together
with the information where in the stream the ASRD believes
to have recognized the wake word. 3© The cloud then runs its
own detection of the wake word (cf. Section 2.4.1). 4© If the
wake word is recognized, the cloud will send a transcription
of the audio back to the device, e. g., “what are the Simpsons.”
In response, Echo will switch the LED indicator to a blue
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circulating animation. In the meantime, the conversational
intelligence engine in the cloud tries to answer the question.
5© Next, the cloud will respond with the spoken answer, en-
coded as an MP3 file. Echo then notifies the cloud that it is
playing the answer, and the LED indicator switches to a blue
fade in/out animation. At the same time, the cloud requests
the device to stop uploading the microphone input. 6© When
the AlexaSpeechPlayer has finished, the ASRD informs the
cloud about the successful playback, and Echo switches the
LED indicator off.

Summarizing, we can confirm that the examined device
is only transmitting microphone input to Amazon’s cloud if
the LED indicator is active and hence acting as a trustworthy
indicator for the user. Based on a packet flow analysis, this is
also true for all other voice assistants. One exception is the
smart speaker built by Xiaomi, which seems to upload speech
that can be considered a near miss to overrule the local ASR
engine, without switching on the LED indicator.

2.4 Reducing Accidental Triggers

Next, we focus on two methods that vendors deploy to prevent
or recover from accidental triggers.

2.4.1 Cloud-Based Wake Word Verification

As mentioned before, the local speech recognition engine is
limited by the speaker’s resources. Thus, in May 2017, Ama-
zon deployed a two-stage system [36], where a low-power
ASR on the Echo is supported by a more powerful ASR
engine in the cloud. A few months later, Apple described
a similar cloud-based verification system, where the main
speech recognizer “sends a cancellation signal” if it detects
something other than “Hey Siri” [6].

Accordingly, accidental triggers can be divided into two
categories: (i) local triggers that overcome the local classifier,
but get rejected by the cloud-based ASR engine, and (ii) local
+ cloud triggers that overcome both. While a local trigger
switches the LED indicator on, a subsequent question “{acci-
dental local trigger}, will it rain today?” will not be answered.
In cases where the cloud does not confirm the wake word’s
presence, it sends a command to the Echo to stop the audio
stream. Surprisingly, the entire process from the local recog-
nition of the wake word to the moment where Echo stops
the stream and switches off the LED indicator only takes
about 1−2 seconds. In our tests, we observe that during this
process, Echo uploads at least 1− 2 seconds of voice data,
approx. 0.5 seconds of audio before the detected wake word
occurs, plus the time required to utter the wake word (approx.
another second). In cases where the cloud-based ASR system
also detects the wake word’s presence, the accidental trig-
ger can easily result in the upload of 10 or more seconds of
voice data. During our experiments, we found that all major

smart speaker vendors use a cloud-based verification system,
including Amazon, Apple, Google, and Microsoft.

2.4.2 Acoustic Fingerprints

To prevent TV commercials and similar audio sources from
triggering Echo devices, Amazon uses an acoustic fingerprint-
ing technique. Before the device starts to stream the micro-
phone input to the cloud, a local database of fingerprints is
evaluated. In the cloud, the audio is checked against a larger
set of fingerprints. The size of the local database on an Ama-
zon Echo (1st Gen.) speaker is limited by its CPU power and
contains 50 entries. This database gets updated approximately
every week with 40 new fingerprints, which mostly contain
currently airing advertisements [57] for Amazon products.
Until mid-May 2020, the database contained dates and clear
text descriptions of the entries. Since then, only hash values
are stored. The database still contained 9 fingerprints from
2017, e. g., the “Echo Show: Shopping Lists” YouTube video.

We evaluate some of the entries by searching for the com-
mercials and find videos where the ASRD reports a “[...]
strong fingerprint match.” However, we also observed false
positives, where fingerprint matches against commercials
were found, which were not present in the database, leaving
the robustness of the technique [30] in question. We found
that the metricsCollector process on the Echo speaker period-
ically collects and uploads the detected fingerprints. This is
particularly concerning for privacy since it shows an interest
of Amazon in these local fingerprint matches that could easily
be combined with the cloud matches and be abused to build
viewing profiles of the users [49]. If the wake word is spoken
on live TV, Amazon will register a large peak in concurrent
triggers with the same audio fingerprint and automatically
request the devices to stop [57].

2.5 Smart Speaker Privacy Settings

To learn more about how vendors handle their users’ data, we
requested the voice assistant interaction history from Ama-
zon, Apple, Google, and Microsoft using their respective web
forms. Among the tested vendors, Apple is the only manufac-
turer that does not provide access to the voice data but allows
users to request their complete deletion.

Table 1: Smart Speaker Privacy Settings

Voice Recordings Local
Vendor Opt-Out Retention Delete Report Trigger

Amazon Yes 3, 18 months A, R, I Yes Yes
Apple Yes 6, 24 months A - -

Google Yes 3, 18 months A, R, I No Yes
Microsoft Yes* Unspecified A, I No No
*Cannot speak to Cortana anymore; A=All, R=Range, I=Individual.
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In Table 1, we analyze whether a user is able to opt-out of
the automatic storing of their voice data, how long the record-
ings will be retained, the possibility to request the deletion
of the recordings, and whether recordings can be reported
as problematic. Furthermore, we checked if false activations
through accidental triggers, i. e., local triggers, are visible to
the user (“Audio was not intended for Alexa”). Apple reports
storing the voice recordings using a device-generated random
identifier for up to 24 months but promises to disassociate the
recordings from related request data (location, contact details,
and app data) [34], after six months. In contrast, customers
of Amazon and Google can choose between two different
voice data retention options. According to Google, the two
time frames of 3 and 18-months are owed to recency and
seasonality [54]. Microsoft’s retention policy is more vague,
but they promise to comply with legal obligations and to only
store the voice data “as long as necessary.”

3 Evaluation Setup

In this section, we describe our evaluated smart speakers and
the datasets we used for our measurement study.

3.1 Evaluated Smart Speakers

In our experiments, we evaluate 11 smart speakers as listed in
Table 2. The smart speakers have been selected based on their
market shares and availability [45, 60]. In the following, with
the term smart speaker, we refer to the hardware component.
At the same time, we use the term voice assistant to refer to
cloud-assisted ASR and the conversational intelligence built
into the speaker.

Since its introduction in 2014, the Amazon Echo is one of
the most popular speakers. It enables users to choose between
four different wake words (“Alexa,” “Computer,” “Echo,”
and “Amazon”). In our experiments, we used four Echo Dot
(3rd Gen.) and configured each to a different wake word.
Similarly, for the Google Assistant, we used a Home Mini
speaker, which listens to the wake words “OK Google” and
“Hey Google.” From Apple, we evaluated a HomePod speaker
with “Hey Siri” as its wake word. To test Microsoft’s Cortana,
we bought the official Invoke smart speaker developed by Har-
man Kardon that recognizes “Cortana” and “Hey Cortana.”

Moreover, we expanded the set by including non-
English (US) speaking assistants from Europe and Asia. We
bought three Standard Chinese (ZH) and one German (DE)
speaking smart speaker. The Xiaomi speaker listens to
“Xiǎo ài tóngxué” (小爱同学), which literately translates to
“little classmate.” The Tencent speaker listens to “Jiǔsì’èr líng”
(九四二零), which literately translates to the digit sequence
9-4-2-0. The wake word is a phonetic replacement of “Jiùshì
ài nı̌,” which translates to “just love you.” The Baidu speaker
listens to “Xiǎo dù xiǎo dù” (小度小度), which literately

translates to “small degree,” but is related to the smart de-
vice product line Xiaodu (little “du” as in Baidu). Finally, we
ordered the Magenta Speaker from the German telecommuni-
cations operator Deutsche Telekom, which listens to “Hallo,”
“Hey,” and “Hi Magenta.” In this case, magenta refers to a
product line and also represents the company’s primary brand
color. Deutsche Telekom has not developed the voice assis-
tant in-house. Instead, they chose to integrate a third-party
white-label solution developed by SoundHound [38]. While
the speaker also allows accessing Amazon Alexa, we have
not enabled this feature for our measurements. The Magenta
Speaker is technically identical to the Djingo speaker [51],
which was co-developed by the French operator Orange.

3.2 Evaluated Datasets
In the following, we provide an overview of the datasets used
to evaluate the prevalence of accidental triggers. We included
media to resemble content, which is likely played in a typi-
cal US household to simulate an environment with ambient
noise from external sources such as TVs [56]. Moreover, we
considered professional audio datasets used by the machine
learning community.

TV Shows The first category of media is TV shows. We
considered a variety of different genres to be most representa-
tive. Our list comprises popular shows from the last 10 years
and includes animated series and a family sitcom, a fantasy
drama, and a political thriller. Our English (US) TV show
dataset includes Game of Thrones, House of Cards, Modern
Family, New Girl, and The Simpsons.

News The second category is newscasts. As newscasts tend
to be repetitive, we used one broadcast per day and television
network only. The analyzed time frame covers news broad-
cast between August and October 2019. Our English (US)
newscasts dataset includes ABC World News, CBS Evening
News, NBC Nightly News, and PBS NewsHour.

Professional Datasets The third category is professional
audio datasets. Due to the costly process of collecting appro-
priate training datasets and the accessibility of extensive and
well-analyzed datasets, we considered professional datasets
commonly used by the speech recognition community.

• LibriSpeech [52]: An audio dataset created by volunteers
who read and record public domain texts to create audio-
books. It contains 1,000 hours of speech. The corpus has
been built in 2015 and is publicly available; it is a widely
used benchmark for automatic speech recognition.

• Mozilla Common Voice [22]: The dataset is based on
an ongoing crowdsourcing project headed by Mozilla
to create a free speech database. At the time of writing,
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Table 2: Evaluated Smart Speakers

ID Assistant Release Wake Word(s) Lang.† Smart Speaker SW. Version

VA1 Amazon: Alexa 2014 Alexa en_us, de_de Amazon: Echo Dot (v3) 392 657 0628
VA2 Amazon: Alexa 2014 Computer en_us, de_de Amazon: Echo Dot (v3) 392 657 0628
VA3 Amazon: Alexa 2014 Echo en_us, de_de Amazon: Echo Dot (v3) 392 657 0628
VA4 Amazon: Alexa 2014 Amazon en_us, de_de Amazon: Echo Dot (v3) 392 657 0628
VA5 Google: Assistant 2012 OK/Hey Google en_us, de_de Google: Home Mini 191 160
VA6 Apple: Siri 2011 Hey Siri en_us, de_de Apple: HomePod 13.4.8
VA7 Microsoft: Cortana 2014 Hey/- Cortana en_us Harman Kardon: Invoke 11.1842.0
VA8 Xiaomi: Xiao AI 2017 Xiǎo ài tóngxué zh_cn Xiaomi: Mi AI Speaker 1.58.4
VA9 Tencent: Xiaowei 2017 Jiǔsì’èr líng zh_cn Tencent: Tı̄ngtı̄ng TS-T1 3.5.0.025

VA10 Baidu: DuerOS 2015 Xiǎo dù xiǎo dù zh_cn Baidu: NV6101 (1C) 1.34.5
VA11 SoundHound: Houndify 2015 Hallo/Hey/Hi Magenta de_de Deutsche Telekom: Magenta Speaker 1.1.2

†: In our experiments, we only considered English (US), German (DE), and Standard Chinese (ZH).

the project includes a collection of 48 languages. Our
English (US) version of the dataset contains 1,200 hours
of speech and has been downloaded in August 2019. As
neither the environment nor the equipment for the audio
recordings is controlled, the quality of the recordings
differs widely.

• Wall Street Journal [53]: A corpus developed to support
research on large-vocabulary, continuous speech recog-
nition systems containing read English text. The dataset
was recorded in 1993 in a controlled environment and
comprises 400 hours of speech.

• CHiME [8]: The CHiME (Computational Hearing in
Multisource Environments) dataset is intended to train
models to recognize speech from recordings made by
distant microphones in noisy environments. The 5th
CHiME challenge dataset includes recordings from a
group dinner of four participants each, with two acting
as hosts and two as guests. Audio signals were recorded
at 20 parties, each in a different home, via six Kinect
microphone arrays and four binaural microphone pairs.
This dataset thus provides multi-channel recordings of
highly realistic, distant-talking speech with natural back-
ground noise. In total, the dataset consists of 50 hours of
recording time.

Noise We used noise recordings as a special category to test
the sensitivity of the voice assistants against audio data other
than speech. For this purpose, we used the noise partition of
the MUSAN dataset [65], containing approximately 6 hours
of many kinds of environmental noise (excluding speech and
music).

Non-English Media To test for linguistic differences, e. g.,
biases between different languages, we tested one Standard
Chinese (ZH) and four German (DE) TV shows. We analyzed

the Chinese TV show All Is Well and the German-dubbed
version of the TV show Modern Family for easy comparison.
Additionally, we tested the German-dubbed version of The
Big Bang Theory, as well as Polizeiruf 110 and Tatort as
examples for undubbed German TV shows. Moreover, we
evaluated three shorter (each 12 hours) samples of the Chinese
newscast CCTV Xinwen Lianbo and the German newscasts
ARD Tagesschau and ZDF Heute Journal.

Female vs. Male Speakers To explore potential gender bi-
ases in accidental triggers of voice assistants, we also included
two sets of randomly chosen voice data from the LibriSpeech
dataset. Every set consisted of a female and a male 24 hour
sample. Every sample was built from multiple 20-minute se-
quences, which themselves were made of 100 different 12
seconds audio snippets.

4 Prevalence of Accidental Triggers

Based on the datasets described above, we now explore the
prevalence of accidental triggers in various media such as TV
shows, newscasts, and professional audio datasets.

4.1 Approach

We start by describing our technical setup to measure the
prevalence of accidental triggers across 11 smart speakers
(cf. Section 3.1) using 24-hour samples of various datasets
(cf. Section 3.2). The basic idea is to simulate a common
living-room-like scenario, where a smart speaker is in close
proximity to an external audio source like a TV.

Testing a living-room scenario is of particular interest, as
it simulates a very popular smart speaker environment (43–
75% of speakers are located in the living room [39]) and
is also used by smart-speaker vendors when evaluating the
performance of their wake-word models (cf. [2, 56, 62, 63]).
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Figure 1: Setup: A loudspeaker (A) is playing media files
from a computer (B). The LED activity indicators of a group
of smart speakers are monitored using light sensors (C). All
speakers are connected to the Internet over Wi-Fi (D). A
webcam (E) is used to record a video of each measurement.

4.1.1 Measurement Setup

Hardware The measurement setup consists of five com-
ponents, as depicted in Figure 1. To rule out any external
interference, all experiments are conducted in a sound-proof
chamber. We positioned 11 smart speakers at a distance of ap-
prox. 1 meter to a loudspeaker (A) and play media files from
a computer (B). To detect any activity of the smart speakers,
we attach photoresistors (C) (i. e., light sensors) on the LED
activity indicator of each speaker, as one can see in Figure 2.
In the case of any voice assistant activity, the light sensor
detects the quick change in brightness and emits a signal to
the computer (B). To prevent interference from external light
sources, the photoresistors are covered by a small snippet of
reusable adhesive tape.

Figure 2: Photoresistor attached to the LED indicator of a
smart speaker. The sensitivity of the sensor can be adjusted
via a potentiometer. Any activity is recognized and logged.

All smart speakers are connected to the Internet using a
WiFi network (D). During all measurements, we record net-
work traces using tcpdump to be able to analyze their activity
on a network level. To verify the measurement results, we
record a video of each measurement via a webcam with a
built-in microphone (E). The entire setup is connected to a
network-controllable power socket that we use to power cycle
the speakers in case of failures or non-responsiveness.

Software To verify the responsiveness of the measurement
setup, we periodically play a test signal, which consists of the
wake word (e. g., “Alexa”) and the stop word (e. g., “Stop”) of
each voice assistant (in its configured language) and a small
pause between them. Overall, the test signal for all 11 speakers
is approximately 2m 30s long. During the measurements, we
verify that each voice assistant triggers to its respective test
signal. In the case of no response, multiple or prolonged
responses, all voice assistants are automatically rebooted and
rechecked. As a side effect, the test signal ensures that each
assistant stops any previous activity (like playing music or
telling a joke) that might have been accidentally triggered by
a previous run. Using this setup, we obtain a highly reliable
and fully automated accidental trigger search system.

4.1.2 Trigger Detection

The process of measuring the prevalence of accidental trig-
gers consists of three parts, as depicted in Figure 3. First, a
24-hour search is executed twice per dataset. Second, a ten-
fold verification of a potential trigger is done to confirm the
existence of the trigger and measure its reproducibility. Third,
a manual classification of verified triggers is performed to
ensure the absence of the wake word or related words. In the
following, we describe these steps in more detail.

I. Search: In a first step, we prepare a 24-hour audio sample
consisting of multiple episodes/broadcasts of approximately
20 minutes each (with slightly different lengths depending
on the source material) for each of the datasets introduced
in Section 3.2. We play each of the 24-hour samples twice
and log any smart speaker LED activity as an indicator for
a potential trigger. The logfile includes a timestamp, the cur-
rently played media, the playback progress in seconds, and
the triggered smart speaker’s name. We played each audio file
twice due to some changes in results that were observed when
we played the same sample multiple times. These changes do
not come as a great surprise, given that they are due to the
internal framing of the recorded audio. Therefore, each time
one plays the same audio file, the system will get a slightly
different signal, with slightly shifted windows and possibly
small changes in the additive noise that cannot be fully pre-
vented but is (strongly) damped in our test environment. Also,
there may be further indeterminacies up in the chain of trigger
processing, as was also noted by others [21, 41].
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Figure 3: Trigger Detection Workflow: Every approx. 24-hour dataset is played twice. Subsequently, the existence of every
potential trigger is confirmed. Finally, every verified trigger is classified as accidental, if the wake word or a related word is not
present in the identified scene.

II. Verification: In a second step, we extract a list of po-
tential triggers from the logfile and verify these triggers by
replaying a 10-second snippet containing the identified scene.
From the potential trigger location within the media, i. e.,
the playback progress when the trigger occurred, we rewind
7 seconds and replay the scene until 3 seconds after the docu-
mented trigger location. This playback is repeated ten times
to confirm the existence and to measure the reproducibility of
the trigger.

III. Classification : In a third step, every verified trigger is
classified by reviewing a 30-second snippet of the webcam
recording at the time of the trigger. Here, two independently
working reviewers need to confirm the accidental trigger by
verifying the correct wake word’s absence. If a trigger is
caused by the respective wake word or a related word such
as Alexander (“Alexa”), computerized (“Computer”), echo-
ing (“Echo”), Amazonian (“Amazon”), etc., we discard the
trigger and exclude it from further analysis. Where available,
the analysis is assisted by the transcriptions/subtitles of the
respective dataset.

To determine the approximate distribution between local
and cloud-based triggers, we expand our classification step.
Instead of only determining the mere presence of the wake
word or a related word, two members of our team also clas-
sify the triggers into local or local+cloud triggers. As noted in
Section 2.5, not all smart speaker vendors provide access or
report local triggers in their voice assistant interaction history.
Thus, we use the internal processes, especially the LED tim-
ings and patterns, to classify triggers. The heuristic for that
classification is based on the time the LED indicator of the
speaker remains on. Based on preliminary tests, we choose
a conservative threshold of 2 seconds of speaker activity to
classify the trigger as local+cloud. Moreover, we use voice
responses and certain LED patterns as obvious signals for
a local+cloud trigger. The inter-rater reliability between our
reviewers, measured by Cohen’s kappa, is κ ≥ 0.89 across all
evaluated datasets.

4.2 Results

An overview of our results can be found in Table 3. We report
the absolute counts of observed accidental triggers and actual
instances of spoken wake words.

Prevalence The average number of uttered words vary
across datasets. Utilizing their subtitles, we exemplarily
counted the number of words in the different TV shows in
Table 3. The TV show with the fewest words in 24 hours
was Game of Thrones, using 126,941 words (88 wpm). In
contrast, 24h of New Girl used 234,460 words (163 wpm).
Across all TV shows, VA7 Hey Cortana had the highest num-
ber of accidental triggers, with one accidental trigger every
9,738 words or 1h 16min. For VA1 Alexa, we observed one
accidental trigger every 29,528 words or 3h 52min. VA6 Hey
Siri triggered much more rarely, with only one misactivation
every 457,684 words or 60h of watching TV.

Comparison Across Speakers Looking at the four VA1-4
Amazon Echo wake words, we can see that “Amazon” (67)
and “Echo” (43) trigger less often than “Alexa” (100) and
“Computer” (80). Moreover, we observe that the VA5 Google
Home (23) and the VA6 Apple HomePod (9) seem to be the
most robust speakers of all English (US) speakers across all
played datasets, and we discuss potential reasons for that in
Section 7.2. Another noteworthy observation is that VA7 Mi-
crosoft Cortana triggered far more often (198) than the other
speakers across all kinds of audio data.

From a qualitative perspective, the identified triggers are
often confusions with similar-sounding words or sequences,
such as, “a lesson” (Alexa), “commuter” (Computer), “OK,
cool” (OK Google), “a city” (Hey Siri). Another category
are proper names that are unknown or likely infrequently
included in the training data. Examples include names of
persons and states such as “Peter” and “Utah” (Computer),
“Eddard” (Echo), “Montana” (Cortana), but also uncommon
old English phrases such as “Alas!” (Alexa). Finally, we ob-
served a few cases of triggers that include fictional language
(Dothraki) or unintelligible language (gibberish) and two oc-
casions of non-speech accidental triggers: A ringing phone
triggering “Amazon” in the TV show New Girl and a honk
made by a car horn triggering “Alexa” in the TV show The
Simpsons.

Comparison Across Datasets When comparing across
datasets, one must keep in mind that the total playback time
differs across categories. While every dataset (i. e., every row
in the table) consisted of 24 hours of audio data, the number
of datasets per category differs. For easier comparison with
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Table 3: Prevalence of Accidental Triggers and Wake Words.

Alexa Computer Echo Amazon
Ok Hey Hey Xiǎo ài Jiǔsì’ Xiǎo dù Hallo

Google Siri Cortana tóngxué èr líng xiǎo dù Magenta

A W A W A W A W A W A W A W A W A W A W A W

en_us en_us en_us en_us en_us en_us en_us zh_cn zh_cn zh_cn de_de

Tot. 31 0 31 6 18 2 38 2 3 0 2 0 94 0 1 0 7 0 0 0 3 0
ph 0.258 0.0 0.258 0.050 0.150 0.017 0.317 0.017 0.025 0.0 0.017 0.0 0.783 0.0 0.008 0.0 0.058 0.0 0.0 0.0 0.025 0.0

T
V

Sh
ow

s GoT 24h 6 - 6 - 5 - 3 - - - - - 14 - 1 - 1 - - - 1 -
H. o. Cards 24h 2 - 11 - 2 2 15 - - - 1 - 14 - - - 3 - - - 1 -
Mod. Fam. 24h 6 - 9 4 4 - 12 1 1 - 1 - 23 - - - 1 - - - 1 -

New Girl 24h 4 - 5 1 4 - 6 - 2 - - - 29 - - - 1 - - - - -
Simpsons 24h 13 - - 1 3 - 2 1 - - - - 14 - - - 1 - - - - -

Tot. 22 5 9 2 4 4 12 62 2 0 4 2 44 0 1 0 4 0 0 0 1 0
ph 0.229 0.052 0.075 0.021 0.042 0.042 0.125 0.517 0.021 0.0 0.042 0.021 0.458 0.0 0.010 0.0 0.042 0.0 0.0 0.0 0.010 0.0

N
ew

s ABC 24h - - 3 - - - 2 9 1 - 1 - 11 - - - 1 - - - - -
CBS 24h 12 1 1 1 - - 7 24 - - - - 13 - - - 1 - - - 1 -
NBC 24h 2 4 - - 2 1 - 23 1 - 2 2 6 - - - 2 - - - - -
PBS 24h 8 - 5 1 2 3 3 6 - - 1 - 14 - 1 - - - - - - -

Tot. 46 1 37 32 21 3 7 1 11 0 2 0 59 0 2 0 3 0 0 0 1 0
ph 0.479 0.010 0.385 0.333 0.219 0.031 0.073 0.010 0.115 0.0 0.021 0.0 0.615 0.0 0.021 0.0 0.031 0.0 0.0 0.0 0.010 0.0

Pr
o.

LibriSp. 24h 14 - 9 - 6 2 5 - - - - - 17 - - - - - - - - -
Moz. CV 24h 10 1 21 5 14 1 2 1 11 - 2 - 18 - 1 - 1 - - - - -

WSJ 24h 22 - 7 27 1 - - - - - - - 24 - 1 - 2 - - - 1 -
CHiME 24h 1 - 3 3 - - 10 2 7 - 1 - 1 - - - 1 - - - - -

Su
m Tot. 100 6 80 43 43 9 67 67 23 0 9 2 198 0 4 0 15 0 0 0 5 0

ph 0.321 0.019 0.256 0.138 0.138 0.029 0.215 0.215 0.074 0.0 0.029 0.006 0.635 0.0 0.0128 0.0 0.048 0.0 0.0 0.0 0.016 0.0

A: Accidental triggers; W : Wake word said; Gray cells: Mismatch between played audio and wake word model language.

previous work [21], we added a row that describes the triggers
per hour (ph) for each category.

In general, we cannot observe any noteworthy differences
in accidental triggers (A) across the three dataset categories.
In contrast, if we have a look at the cases where the wake word
was actually said (W), we see that this was very often the case
for “Computer” in the professional Wall Street Journal dataset
caused by an article about the computer hardware company
IBM and for “Amazon” across the news datasets. In this case,
the 62 instances of “Amazon” referred 13 times to the 2019
Amazon rainforest wildfires and 49 times to the company.

If we look at the professional datasets, the number of trig-
gers is within the same range or even increases compared to
TV shows and news. As such, we have not found a speaker
that triggered less often, because it might have been specifi-
cally trained on one of the professional datasets. In contrast
to the other professional audio datasets, the CHiME dataset
consists of recordings of group dinner scenarios resulting in
comparatively less spoken words, explaining the overall lower
number of accidental activations. Not presented in Table 3 is
the MUSAN noise dataset, because we have not observed any
triggers across the different speakers. This suggests that acci-
dental triggers are less likely to occur for non-speech audio
signals.

Comparison Between Local and Cloud-Based Triggers
To reduce false device activations and improve wake word
accuracy, smart speaker vendors make use of cloud-based
verification systems (cf. Section 2.4.1). An overview of the

distribution can be seen in Figure 4. Depending on the wake
word, we find that the cloud ASR engine also misrecognizes
about half of our accidental triggers. Fortunately for Cortana,
only a small number of triggers (8 out of 197) are able to trick
Microsoft’s cloud verification.

Figure 4: The number of accidental triggers that are incor-
rectly recognized by the local and the cloud-based ASR en-
gine. Local triggers are triggers that are recognized as the
wake word by the local model only. Cloud triggers are recog-
nized by both the local and the cloud model.
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Comparison Between Female and Male Speakers We
performed an experiment designed to study a potential model
bias in smart speakers, a common problem for machine learn-
ing systems [20, 40, 67]. We conducted a hypothesis test
with α = .05 using a Kruskal-Wallis H test, as the num-
ber of accidental triggers (discrete data) are not normally
distributed (Shapiro-Wilk normality test, W = 0.66659, p <
0.001). Across our tested datasets, our experiments did not
show a significant difference between female and male speak-
ers (Kruskal-Wallis chi-squared = 0.16128, df = 1, p = 0.688).
The detailed numbers are shown in Table 4.

Comparison Across Languages In Table 5, we report the
results for the differences across languages to explore another
potential model bias of the evaluated systems. Even though
we only tested a small number of datasets per language, the
number of triggers of VA5 Google and VA6 Apple is very
low and comparable to their English performance. Given the
fact that we played the very same episodes of the TV show
Modern Family in English (US) and German, we find the
wake word “Computer” to be more resistant to accidental
triggers in German (1) than in English (9). A similar but less
pronounced behavior can be seen with “Alexa.” Moreover, we
found that “big brother” in Standard Chinese dàgē (大哥) is
often confused with the wake word “Echo”, which is hence
not the best wake word choice for this language. Similarly,
the German words “Am Sonntag” (“On Sunday”), with a
high prevalence notably in weather forecasts, are likely to be
confused with “Amazon.”

Multilingual Speakers and Language Mismatch Every
year, the United States Census Bureau [68] surveys 3.5 mil-
lion households across the US and publishes their findings
in the American Community Survey (ACS). According to
the ACS, 21.6% of the surveyed people speak a language
other than English at home. With 13.4%, Spanish is the most
common spoken language other than English in the US. Stan-
dard Chinese and German are spoken in less than < 1% of
the surveyed US households. In our experiments, we found
that the German and the three Chinese wake word models
do not trigger very often on English (US) content (cf. right
part of Table 3). However, more experiments with different
languages are required to fully understand the privacy impact
of accidental triggers on bilingual households.

4.3 Reproducibility

During the verification step of our accidental trigger search,
we replayed every trigger 10 times to measure its reproducibil-
ity. This experiment is designed based on the insight that ac-
cidental triggers likely represent samples near the decision
thresholds of the machine learning model. Furthermore, we
cannot control all potential parameters during the empirical

experiments, and thus we want to study if, and to which extent,
a trigger is actually repeatable.

We binned the triggers into three categories: low, medium,
and high. Audio snippets that triggered the respective assistant
1–3 times are considered as low, 4–7 times as medium, and
8–10 times as high. In Figure 5, we visualize these results.

Figure 5: Accidental Trigger Reproducibility. Note that the
four speakers below the dashed line do not use wake words
in English (US); “Xiǎo dù xiǎo dù” did not have any triggers.

We observe that across the Amazon and Google speakers,
around 75 % of our found triggers are medium to highly re-
producible. This indicates that most of the identified triggers
are indeed reliable and represent examples where the wake
word recognition fails. For the Apple and Microsoft speakers,
the triggers are less reliable in our experiments. One caveat of
the results is that the Chinese and German speakers’ data are
rather sparse and do not allow any meaningful observation
and interpretation of the results.

5 Crafting Accidental Triggers

The previous experiments raise the question of whether it
is possible to specifically forge accidental triggers in a sys-
tematic and fully automated way. We hypothesize that words
with a similar pronunciation as the wake word, i. e., based
on similar phones (the linguistically smallest unit of sounds)
are promising candidates. In this section, we are interested in
crafting accidental triggers that are likely caused by the wake
word’s phonetic similarity.

5.1 Speech Synthesis

To systematically test candidates, we utilize Google’s TTS
API. To provide a variety across different voices and genders,
we synthesize 10 different TTS versions, one for each US
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Table 4: Differences Between Female and Male Speakers.

Alexa Computer Echo Amazon
Ok Hey Hey Xiǎo ài Jiǔsì’ Xiǎo dù Hallo

Google Siri Cortana tóngxué èr líng xiǎo dù Magenta

A W A W A W A W A W A W A W A W A W A W A W

en_us en_us en_us en_us en_us en_us en_us zh_cn zh_cn zh_cn de_de

Tot. 31 3 9 0 4 6 10 0 0 0 0 0 41 0 1 0 1 0 0 0 2 0
ph 0.646 0.062 0.188 0.0 0.083 0.125 0.208 0.0 0.0 0.0 0.0 0.0 0.875 0.0 0.020 0.0 0.020 0.0 0.0 0.0 0.042 0.0

Fe
m

. LibriSp. I 24h 9 2 8 - 2 4 4 - - - - - 19 - - - 1 - - - 1 -
LibriSp. II 24h 22 1 1 - 2 2 6 - - - - - 22 - 1 - - - - - 1 -

Tot. 33 0 8 0 0 8 8 2 1 0 0 0 46 0 1 0 0 0 0 0 0 0
ph 0.688 0.0 0.167 0.0 0.0 0.167 0.167 0.042 0.021 0.0 0.0 0.0 0.958 0.0 0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M
al

e LibriSp. I 24h 19 - 3 - - 4 5 2 - - - - 20 - 1 - - - - - - -
LibriSp. II 24h 14 - 5 - - 4 3 - 1 - - - 26 - - - - - - - - -

A: Accidental triggers; W : Wake word said; Gray cells: Mismatch between played audio and wake word model language.

Table 5: Differences in Languages.

Alexa Computer Echo Amazon
Ok Hey Hey Xiǎo ài Jiǔsì’ Xiǎo dù Hallo

Google Siri Cortana tóngxué èr líng xiǎo dù Magenta

A W A W A W A W A W A W A W A W A W A W A W

English Time en_us en_us en_us en_us en_us en_us en_us zh_cn zh_cn zh_cn de_de

Modern Family 24h 6 - 9 4 4 - 12 1 1 - 1 - 23 - - - 1 - - - 1 -

German Time de_de de_de de_de de_de de_de de_de en_us zh_cn zh_cn zh_cn de_de

Modern Family 24h 1 1 1 13 3 - 13 1 2 - 2 - 17 - - - 1 - - - - -

Big Bang Theory 24h - - 1 9 9 - 3 2 2 1 1 1 12 - - - - - - - 1 -
Polizeiruf 110 24h 3 - 4 7 3 - 13 - - - - - 18 - - - - - - - - -

Tatort 24h - - - 8 4 - 15 1 2 - - - 6 - - - - - - - - -

ARD Tagesschau 12h 3 - 1 1 - - 10 13 1 - - 1 29 - 1 - - - - - - -
ZDF Heute Journal 12h - - - 4 - - 5 3 - - - - 8 - - - 1 - - - - -

Standard Chinese Time en_us en_us en_us en_us en_us en_us en_us zh_cn zh_cn zh_cn de_de

All Is Well 24h 1 - 1 - 9 - 6 - - - - - 28 - - - - - 2 - - -
CCTV X. Lianbo 12h 3 - 1 - 1 - - - - - 1 - 38 - - - 3 - - - - -

A: Accidental triggers; W : Wake word said; Gray cells: Mismatch between played audio and wake word model language.

English voice in the TTS API. Four of the voices are standard
TTS voices; six are Google WaveNet voices [70]. In both
cases, the female-male-split is half and half.

Note that some words have more than one possible pronun-
ciation (e. g., T AH M EY T OW vs. T AH M AA T OW).
Unfortunately, we cannot control how Google’s TTS service
pronounces these words. Nevertheless, we are able to show
how, in principle, one can find accidental triggers, and we use
10 different voices for the synthesis to limit this effect.

5.2 Levenshtein Distance

To compare the wake words with other words, we use the
Fisher corpus [15] version of the Carnegie Mellon University
pronouncing dictionary [44], an open-source pronunciation
dictionary for North American English listing the phone se-
quences of more than 130,000 words. We propose two ver-

sions of a weighted phone-based Levenshtein distance [50] to
measure the distance of the phonetic description of a candi-
date to the phonetic description of the respective wake word
in order to find potential triggers in a fully automated way.
Using dynamic programming, we can compute the minimal
distance L (under an optimal alignment of the wake word and
the trigger word). Formally, we calculate

L =
s ·S+d ·D+ i · I

N
(1)

with the number of substituted phones S, inserted phones I,
deleted phones D, and the total number of phones N, describ-
ing the weighted edit distance to transform one word into
another. The parameters s, d, and i describe scale factors for
the different kinds of errors.

In the following, we motivate our different scale factors:
During the decoding step of the recognition pipeline, a path
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search through all possible phone combinations is conducted
by the automatic speech recognition system. In general, for
the recognition, the path with the least cost is selected as
the designated output of the recognition (i. e., wake word
or not wake word). Considering these principles of wake
word recognition, we assume that the different kinds of errors
have different impacts on the wake word recognition, as e. g.,
utterances with deletions of relevant phones will hardly act as
a wake word.

To find the optimal scale factors, we conducted a hyper-
parameter search where we tested different combinations of
weights. For this, we played all different TTS versions of
50,000 English words and measured which of the voice assis-
tants triggered at least once. In total, we were able to measure
826 triggers. In a second, more advanced, version of this dis-
tance measure, we considered phone-depended weights for the
different kinds of errors. A more detailed description of this
version of the distance measure is presented in Section 5.3.

We ignore words which are either the wake word itself
or pronounced like parts of the wake word (e. g., “Hay” is
blocklisted for “Hey” or “computed” for “computer”). The
blocklist of the wake words contains a minimum of 2 words
(Cortana) and up to 6 words (Computer). For the optimization,
we used a ranked-based assessment: We sorted all 50,000
words by their distance L and used the rank of the triggered
word with the largest distance as a metric to compare the
different weighted Levenshtein distances. With this metric,
we performed a grid search for s, d, i over the interval [0,1]
with a step width of 0.05.

Note that not all accidental triggers can be explained effec-
tively with the proposed model. Therefore, in a first step, we
filter all available triggers to only include those that can be
described with this model. This step is necessary, as we are
not interested in crafting all possible accidental triggers such
as noise, but accidental triggers that are likely caused by the
phonetic similarity to the wake word only. Also, the Invoke
speaker and the Google Home Mini both have two potential
wake words. By focusing on the subset of accidental triggers
that can describe the respective wake word more closely, we
can filter out the other version of the wake word. Specifically,
we only used triggers were we were able to describe the trig-
ger with the proposed distance measure in such a way that it
remained within the first 1 % (500) of words if we overfitted
the distance measure to that specific word. In other words, we
only considered triggers for our hyperparameter search where
a combination of scale factors exits such that the trigger has
at most the rank 500. After applying this filter criterion, 255
out of the 826 triggers remained in the dataset.

5.3 Phone-Dependent Weights

For a more advanced version of the weighted Levenshtein
distance, we utilized information about how costly it is to
substitute, delete, and insert specific phones (i. e., intuitively

it should be less costly to replace one vowel with another
vowel in comparison to replacing a vowel with a consonant).
For this, we calculated phone-dependent weights as described
in the following: We used a trained ASR system and employed
forced alignment, which is usually used during the training of
an ASR system to avoid the need for a detailed alignment of
the transcription to the audio file. We can use this algorithm to
systematically change phones in the transcription of an audio
file and measure the costs of these specific changes.

To measure the impact of such changes, we distinguish
between deletions, substitutions, and insertions: To assess the
cost of the deletion of specific phones, we randomly draw
100 words that contain that specific phone and synthesize
10 versions of this word via Google’s TTS API. We use the
difference of the scores of the forced alignment output with
and without this specific phone for all TTS versions of the
word. For example, we use the word little with the phonetic
description L IH T AH L for the phone AH in Alexa and
measure the score of the forced alignment algorithm for L IH
T AH L and L IH T L. The loss in these two scores describes
the cost of deleting the sound ‘AH’ in this specific context.
For the final weights, we use the average over all 100 words
and 10 TTS versions and finally normalize the values of all
averaged phone costs to obtain a mean value of 1.0. The
resulting deletion weights d̂ are shown in Figure 6.

Similarly, to determine the cost of all possible substitutions,
we replace the phone-under-test with all other phones for
all 100 words and 10 TTS versions. We followed the same
approach as for the deletion costs, averaging and normalizing
the log-likelihood scores to define the final weights. The
matrix of the substitution weights is shown in Figure 7. The
rows describe the original phones of the wake words and
the columns the substituted phone. The higher the value, the
higher are the costs for the transcription if the phone of a
wake word is replaced by the respective other phone. Note
that we only calculated the weights of phones that occur in
the wake words. Therefore, the rows in the figure do not show
all possible phones of the language. The rows of the matrix
are also normalized to have an average value of 1.0. Finally,
we compare the scores between the original transcription and
insert the considered phone for the insertion weights. These
weights are also normalized to have an average value of 1.0.
The insertion weights are shown in Figure 8. All weights are
then used along with the scale factors.

5.4 Cross-Validation

We performed a leave-one-out cross-validation to measure
the performance of Equation (1) in predicting whether words
are potential accidental triggers. For this purpose, we com-
pared three different versions of Equation (1): a version, with
all scales set to 1 (Unweighted), a scaled version where we
optimized the scale factors (Simple), and a version where we
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used our optimized scale factors and the phone-dependent
weights (Advanced).

Table 6: Results of the leaving-one-out cross-validation. We
report the numbers of triggers within the 100 words with the
smallest distance to the respective wake word.

ID Wake Word Total Unweighted Simple Advanced

VA1 Alexa 52 9 17 24
VA2 Computer 75 17 21 32
VA3 Echo 23 4 5 12
VA4 Amazon 12 1 1 7
VA5a OK Google 2 0 0 0
VA5b Hey Google 1 0 0 0
VA6 Hey Siri 7 3 3 5
VA7a Hey Cortana 38 9 9 6
VA7b Cortana 45 13 14 10

We have run a hyperparameter search for the simple and
the advanced version of eight wake words triggers for each
fold and tested the resulting scale factors on the remaining
wake word. The results in Table 6 show the number of triggers
we find within the 100 words with the smallest distance for
all three versions of the Levenshtein distance and all wake
words. Note that the distances tend to cluster words into same
distances due to the fixed length of each wake word and,
therefore, the same total number of phones N, especially for
the unweighted and the simple version.

For cases where it is not possible to clearly determine the
closest 100 words, we use all words with a smaller distance
than the 100th word and draw randomly out of the words with
the next largest distance until we obtain a list of 100 words
which makes sure to have a fair comparison in Table 6.

Figure 6: Deletion weights used for the advanced version of
the weighted Levenshtein distance. The higher the value, the
higher the costs if this phone is removed.

In the third column (Total), we show the total number of
words that triggered the perspective wake words, out of the
50,000 words, after filtering. Note that the Google wake words
had only 1 or 2 triggers and that, therefore, not more than these
can be in the top 100.

The different versions of the Levenshtein distance gen-
erally show better results for the simple and the advanced
version compared to the unweighted version, especially for
all Amazon wake words. Only for the two wake words from
Microsoft, this is not the case. Nevertheless, the advanced

Figure 7: Substitution weights used for the advanced version
of the weighted Levenshtein distance plotted as a matrix de-
scribing the cost to replace the phone in the row with a phone
of the columns.

Figure 8: Insertion weights used for the advanced version of
the weighted Levenshtein distance. The higher the value, the
higher the costs if this phone is inserted.

version shows the best results on average and is, therefore,
the version we use in the following experiments. Notably,
for e. g., Computer, approximately one third (32/100) of the
words with the smallest distance actually triggered the smart
speaker and for many of the wake words, more or almost half
of all possible triggers can be found within the 100 words
with the smallest distance.

5.5 Performance on Real-World Data

With the optimized scale factors and weights, we evaluate the
distance measure on the transcriptions of the CHiME dataset
to assess the performance of the optimized distance measure
on real-world voice data. For this purpose, we consider n-
grams to test also sequences of words that occur in the CHiME
transcriptions, namely 1-, 2-, and 3-grams.
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We perform a hyperparameter search for the advanced ver-
sion of the Levenshtein distance (scale factors and phone-
dependent weights) on the triggers of all 9 wake words on
the data set used in Section 5.4. For these, the optimal scale
factors are s = 1.46, d = 1.30, and i = 0.24, which we use
in the following experiment. We select the 100 words with
the smallest distance to the respective wake word from all 1-,
2-, and 3-grams. In total, 300 n-grams for each wake word.
All these n-grams are synthesized with Google’s TTS API.
We then play these crafted triggers against all smart speakers.
The results of the CHiME n-grams are shown in Table 7.

We have identified very common words like “compare”
(Computer; rank 405), “collection” (Alexa; rank 743), “techni-
cal” (Echo; rank 775), or “ago” (Echo; rank 807) and phrases
like “collection of” for Alexa, “compared to” for Computer,
“capable of” for OK Google, “a goal” for Echo, “fresh parme-
san” for Amazon, “my cereal” for Hey Siri, and “all acts of”
for Alexa. A manual analysis revealed that some of the crafted
triggers were also found, and also caused triggers, in our pre-
viously tested real-world data. Examples include: (Alexa)
“Election day is” in Modern Family, (Computer) “compared
to the millions” in PBS NewsHour, and (Cortana) “Montana’s
bag limits are” in LibriSpeech.

Table 7: We construct word sequences based on n-grams
from the CHiME transcriptions. We report the numbers of
triggers within the 100 n-grams with the smallest distance to
the respective wake word.

ID Wake Word 1-gram 2-gram 3-gram

VA1 Alexa 7 10 5
VA2 Computer 16 12 10
VA3 Echo 1 8 3
VA4 Amazon 2 11 4
VA5a OK Google 0 1 0
VA5b Hey Google 0 0 0
VA6 Hey Siri 2 2 0
VA7a Hey Cortana 8 8 4
VA7b Cortana 7 5 6

6 Related Work

There is an increasing amount of work focusing on the privacy
of smart speakers that motivates and guides our research, as
discussed in the following.

6.1 Smart Speaker Privacy
Malkin et al. [46] studied the privacy attitudes of 116 smart
speaker users. Almost half of their respondents did not know
that their voice recordings are stored in the cloud, and only a
few had ever deleted any of their recordings. They reported

that their participants were particularly protective about other
people’s recordings, such as guests. Besides conversations
that include children, financial, sexual, or medical information,
accidentally captured conversations were named information
that should automatically be screened out and not stored. Lau
et al. [42] studied privacy perceptions and concerns around
smart speakers. They found an incomplete understanding
of the resulting privacy risks and document problems with
incidental smart speaker users. For example, they describe
that two of their participants used the audio logs to surveil
or monitor incidental users. They noted that current privacy
controls are rarely used. For example, they studied why users
do not make use of the mute button on the smart speaker. Most
of their participants preferred to simply unplug the device and
give trust issues and the inability to use the speaker hands-free
as reasons not to press the mute button.

Similarly, Abdi et al. [1] explored mental models of where
smart speaker data is stored, processed, and shared. Ammari et
al. [5] studied how people use their voice assistants and found
users being concerned about random activations and docu-
mented how they deal with them. Huang et al. [35] studied
users’ concerns about shared smart speakers. Their partici-
pants expressed worries regarding voice match false positives,
unauthorized access of personal information, and the misuse
of the device by unintended users such as visitors. They con-
firmed that users perceive external entities, such as speaker
vendors, collecting voice recordings as a major privacy threat.
Chung et al. [14] named unintentional voice recordings a
significant privacy threat and warned about entities with le-
gitimate voice data access and commercial interests, as well
as helpless users not in control of their voice data. Tabassum
et al. [66] studied always-listening voice assistants that do
not require any wake word. Zeng et al. [74] studied security
and privacy-related attitudes of people living in smart homes.
Their participants mentioned privacy violations and concerns,
particularly around audio recordings. In this paper, we study
the actual prevalence and implications of accidental triggers
with the goal of providing tangible data on this phenomenon,
as well as an effective process for assessing trigger accuracy
of devices by means of crafting likely accidental triggers.

Dubois et al. [21] published a paper where they played 134
hours of TV shows to measure the prevalence of accidental
triggers. Their setup relied on a combination of a webcam,
computer vision, and a network traffic-based heuristic. In con-
trast to our work, the authors focused only on a comparatively
small TV show dataset and English-speaking smart speakers.
They did not consider speakers from other countries, other lan-
guages, or other audio datasets. Furthermore, while their work
only speculates about regional differences, our reverse engi-
neering of Amazon Echo internals confirms the existence of
different wake word models per language, region, and device
type (e. g., en-US vs. en-GB). Finally, we propose a method
to craft accidental triggers that enables us to find new triggers
systematically and discuss possible countermeasures.
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6.2 Inaudible and Adversarial Examples
Adversarial examples against speech recognition systems try
to fool the system to output a wrong transcription. For hu-
man listeners, the adversarial examples are not at all or only
barely distinguishable from benign audio. In 2016, Carlini et
al. [13] have shown that targeted attacks against HMM-only
ASR systems are possible. To create their adversarial audio
samples, they used an inverse feature extraction. The resulting
audio samples were not intelligible by humans. Schönherr et
al. [59] presented an approach where psychoacoustic model-
ing, which is borrowed from the MP3 compression algorithm,
was used to re-shape the perturbations of the adversarial ex-
amples. Their approach improves previous work by hiding
the changes to the original audio below the human hearing
thresholds. Later, the attack was ported to an over-the-air set-
ting by crafting examples that remain robust across different
rooms [58]. The accidental triggers identified by our work
can be combined with adversarial examples to wake up smart
speakers in an inconspicuous way.

7 Discussion

In this section, we discuss and interpret our findings and pro-
pose countermeasures that can help to reduce the impact of
accidental triggers.

7.1 Prevalence and Privacy Impact
Overall, the number of observed accidental triggers differ
across smart speaker vendor and wake word model. For the
popular English US Alexa wake word model and the most
realistic of the tested scenarios, i. e., TV shows, we observed
one accidental trigger every 4 hours, so, depending on the
usage, possibly multiple times a day. Whether this is reason
for concern or perceived as low and acceptable ultimately
relies on the user. However, from the literature, it is known
that misactivations are perceived as “a major privacy threat”
for some users and may also affect unintended users such as
visitors [5, 14, 21, 35, 46]. Moreover, it is documented that
users have an incomplete understanding of the privacy risks
and that existing privacy controls are rarely used [42]. As
the underlying problem of accidental triggers, the trade-off
between a low false acceptance and false rejection rate is hard
to balance, we will discuss potential measures that can help
to reduce the impact of accidental triggers on users’ privacy
in the following.

7.2 Wake Word
The results of our experiments suggest possible reasons for
the differences across smart speakers and raise the question
about the importance of the wake word and why their vendors
have chosen them in the first place.

Properties of Robust Wake Words Looking at the number
of words in a wake word, one would assume a clear benefit
using two words. This observation is supported by the results
in Table 6, where “Cortana” leads to more triggers than “Hey
Cortana.” On the contrary, the shortest wake word “Echo”
has fewer triggers than “Hey Cortana,” suggesting that not
only the number of words (and phones) itself is important,
but the average distance to common words in the respective
language. These results suggest that increasing the number
of words in a wake word has the same effect as increasing
the distance to common words. If we consider the differences
in the prevalence of accidental triggers, and that adding an
additional word (e. g., “Hey”) comes at close to no cost for
the user, we recommend that vendors deploy wake words
consisting of two words.

Word Selection Amazon shared some details about why
they have chosen “Alexa” as their wake word [12]: The de-
velopment was inspired by the LCARS, the Star Trek com-
puter, which is activated by saying “Computer.” Moreover,
they wanted a word that people do not ordinarily use in ev-
eryday life. In the end, Amazon decided on “Alexa” because
it sounded unique and used soft vowels and an “x.” The co-
founder of Apple’s voice assistant chose the name “Siri” after
a co-worker in Norway [32]. Later, when Apple turned Siri
from a push-to-talk into a wake word-based voice assistant,
the phrase “Hey Siri” was chosen because they wanted the
wake word to sound as natural as possible [7]. Based on those
examples we can see that the wake word choice in practice is
not always a rational, technically founded decision, but driven
by other factors like marketing as in “OK Google,” “Amazon,”
“Xiǎo dù xiǎo dù,” or “Hallo Magenta,” or based on other
motivations such in the case of “Siri” or “Computer.” Another
issue can arise when trying to port a wake word across lan-
guages. An example of that is the confusion of dàgē (“big
brother”) and “Echo” described in Section 4.2, and it gets
even more complicated in multilingual households [64].

7.3 Countermeasures
As long as the precise detection of wake words remains a
challenge, there is a need for preventing and limiting the
impact of accidental triggers.

Limiting the Impact As stated in their privacy policy, the
Magenta Speaker from Deutsche Telekom automatically stops
the upload of the audio stream after 8 seconds if no voice
command can be detected in the recording [19].

While such accidental uploads are still problematic, it is
an easy-to-implement protection mechanism, which has the
potential to at least limit the privacy violation caused by acci-
dental triggers. Similarly, Google’s feature that allows users
to adjust the wake word’s responsiveness might help in certain
environments (cf. Section 2.2).
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Local On-Device Speech Recognition Coucke et al. [17]
describe a smart speaker that runs completely offline and
is thus private-by-design. In 2019, Google deployed an on-
device speech recognizer on a smartphone that can transcribe
spoken audio in real-time without an Internet connection [31,
37]. We find such an approach to be promising, as it can help
to reduce the impact of accidental triggers by limiting the
upload of sensitive voice data. After the local ASR detects
the wake word, one can imagine a speaker that transcribes
the audio and only after being ensured to have detected a
user command, uploads the short wake word sequence for
cloud verification. When both ASR engines agree about the
wake word’s presence, the command is forwarded to the cloud
in text or audio form. Ahmed et al. [3] describe a speech
transcription service that applies a series of privacy-protecting
operations before uploading the voice data to the cloud, but
in its current form, also introduces a very high latency. Sigtia
et al. [61] explore the accuracy vs. latency tradeoff that exists
when including parts of the audio following the wake word
as a signal to detect accidental triggers.

Device-Directed Queries and Visual Cues Amazon pre-
sented a classifier for distinguishing device-directed queries
from background speech in the context of follow-up
queries [4, 47]. While follow-up queries are a convenience
feature, one can imagine a similar system that can reduce the
number of accidental triggers. Mhaidli et al. [48] explored
the feasibility to only selectively activate a voice assistant
using gaze direction and voice volume level by integrating a
depth-camera to recognize a user’s head orientation. While
this approach constitutes a slight change in how users interact
with a smart speaker, it effectively reduces the risk of acci-
dental triggers, by requiring a direct line-of-sight between the
user and the device. However, their participants also expressed
privacy concerns due to the presence of the camera.

Privacy Mode and Safewords Lau et al. [42] has docu-
mented the ineffectiveness of current privacy controls, such
as the mute button, given the inability to use the speaker
hands-free when muted. We imagine a method similar to a
safeword as a possible workaround for this problem. For this,
the speaker implements a privacy mode that is activated by a
user saying, “Alexa, please start ignoring me,” but could, for
example, also be activated based on other events such as the
time of the day. In the privacy mode, the speaker disables all
cloud functionality, including cloud-based wake word verifi-
cation and question answering.

The speaker’s normal operation is then re-enabled by a
user saying, “Alexa, Alexa, Alexa.” Repeating the wake word
multiple times is similar to a behavior observed when parents
call their children multiple times, if they do not like to listen,
this will feel natural to use. Due to the requirement to speak
the somewhat lengthy safeword, accidental triggers will only
happen very rarely. We imagine this privacy control to be

more usable than a mute button, as the hands-free operation
is still possible. As only the wake word is repeated multiple
times, we think that vendors can implement this functionality
using the local ASR engine.

Increased Transparency & Informed Consent Another
option is to increase transparency and control over the reten-
tion periods and individual uploads and recordings. In par-
ticular, our experience with Microsoft’s Privacy Dashboard
made it clear that vendors need to implement features to bet-
ter control, sort, filter, and delete voice recordings. Amazon’s
and Google’s web interface already allow a user to filter in-
teractions by date or device easily. In particular, we imagine
a view that shows potential accidental triggers, e. g., because
the assistant could not detect a question. Currently, acciden-
tal triggers are (intentional) not very present, and are easy
to miss in the majority of legitimate requests. If accidental
triggers are more visible, we hope that users will start to more
frequently use privacy controls such as safewords, the mute
button, or to request the deletion of the last interaction via
a voice command, e. g., “Hey Google, that wasn’t for you.”
At first, integrating such a functionality seems unfavorable to
vendors, but it can easily be turned into a privacy feature that
can be seen as an advantage over competitors.

Similarly, how the voice data collection practices are com-
municated with the user and the ways of obtaining informed
consent need to be improved. While Google turned off the
voice data collection for every user in August 2020 [11] by
default, the company also added a clarifying video that better
explains why and how the voice data is collected and manu-
ally reviewed by third parties. In contrast, Amazon still “hides”
their practices in the terms of service, and Apple nudges users
to give their consent via periodic reminders and the specific
design of the consent form in their user interface.

Discriminative Training with Crafted Wake Words
Crafting accidental triggers may also be used to reinforce
wake word detection, for example, by discriminative train-
ing. Here, the likelihood ratio (or more generally, the system-
specific discriminance score) between the actual wake words
and all potentially confusing word sequences should be max-
imized. These potential confounders could be identified by
crafting triggers as described in Section 5.

7.4 Limitations
We have neither evaluated nor explored triggers for varying
rooms and acoustic environments, e. g., distances or volumes.
Varying conditions influence the propagation in a room and,
therefore, the recognition of the audio signal. Even if this
might influence the reproducibility, this was not part of our
study, as we focused on the general number of accidental
triggers in a comparable setup across all experiments. This
also implies that our results are somewhat tied to the hard-
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and software version of the evaluated smart speakers. Our
results are subject to change due to model updates for the
local ASR or updates of the cloud model. Furthermore, we
are dealing with a system that is not entirely deterministic,
as others already noted [41]. Accidental triggers we mark as
local triggers sometimes pass the cloud-based recognizer and
vice versa. Our findings are mainly based on the English (US)
language; even though we also played a limited set of German
and Standard Chinese media, our results are not generalizable
to other languages or ASR models. This is mainly because
spoken languages can be different by accent, vocal pitch, tone,
word stress, and more. For example, Standard Chinese is a
tonal language, where the meaning of a syllable is affected by
its pitch trajectory. German is more closely related to English,
but makes more use of compound words and differs in the
number and identity of its phonetic units.

8 Conclusion

In this work, we conduct a comprehensive analysis of acciden-
tal triggers in voice assistants and explore their impact on the
user’s privacy. We explain how current smart speakers try to
limit the impact of accidental triggers using cloud-based veri-
fication systems and analyze how these systems affect users’
privacy. More specifically, we automate the process of find-
ing accidental triggers and measure their prevalence across
11 smart speakers. We describe a method to artificially craft
such triggers using a pronouncing dictionary and a weighted
phone-based Levenshtein distance metric that can be used to
benchmark smart speakers. As the underlying problem of ac-
cidental triggers, the trade-off between a low false acceptance
and false rejection rate is hard to balance. We discuss coun-
termeasures that can help to reduce the number and impact of
accidental triggers. To foster future research on this topic, we
publish a data set of more than 350 accidental triggers.
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