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Abstract
System prompts that include detailed instructions to de-

scribe the task performed by the underlying LLM can easily
transform foundation models into tools and services with min-
imal overhead. They are often considered intellectual property,
similar to the code of a software product, because of their cru-
cial impact on the utility. However, extracting system prompts
is easily possible. As of today, there is no effective counter-
measure to prevent the stealing of system prompts, and all
safeguarding efforts could be evaded.

In this work, we propose an alternative to conventional sys-
tem prompts. We introduce prompt obfuscation to prevent the
extraction of the system prompt with little overhead. The core
idea is to find a representation of the original system prompt
that leads to the same functionality, while the obfuscated
system prompt does not contain any information that allows
conclusions to be drawn about the original system prompt. We
evaluate our approach by comparing our obfuscated prompt
output with the output of the original prompt, using eight
distinct metrics to measure the lexical, character-level, and
semantic similarity. We show that the obfuscated version is
constantly on par with the original one. We further perform
three different deobfuscation attacks with varying attacker
knowledge—covering both black-box and white-box condi-
tions—and show that in realistic attack scenarios an attacker is
unable to extract meaningful information. Overall, we demon-
strate that prompt obfuscation is an effective mechanism to
safeguard the intellectual property of a system prompt while
maintaining the same utility as the original prompt.

1 Introduction

Tailoring general-purpose foundation models for specific
tasks can be achieved through fine-tuning and prompting. Dur-
ing this process, the model is trained or prompted to learn how
to respond to a specific request. For example, a chat model
such as the Llama models [3] can be fine-tuned to coding
tasks [39] but also to natural language tasks such as sentiment

analysis or question answering [42]. Although fine-tuning
with LoRA [21] or QLoRA [13] makes the process more effi-
cient and is, in principle, also possible on consumer hardware,
it still requires carefully curated training data and resources
to update a model. Furthermore, it has been shown before
that fine-tuning a model can unintentionally alter its behavior,
such as breaking the alignment [38] and encouraging halluci-
nations [18]. In addition, most commercial LLMs—such as
the newest models from OpenAI or Claude—are not freely
accessible and therefore cannot be easily fine-tuned. A popu-
lar alternative is to prompt foundation models directly with a
detailed explanation of the task, via a so-called system prompt.
Although fine-tuning reprograms a model, prompting offers
greater flexibility at lower cost and does not require addi-
tional training data. In addition, OpenAI’s custom GPTs [1]
can be configured solely through system prompts, allowing
even inexperienced users to create distinct model behaviors
without fine-tuning. These customized models can be shared
on the GPT store as black-box solutions, making specialized
functionality broadly accessible.

The flexibility of prompting and the ease of use come with
a price: The content of the system prompt can easily be leaked,
even word for word, with carefully crafted user input, also
known as prompt injection attacks [16, 30–32]. This has hap-
pened for thousands of commercial tools, where the system
prompt was leaked and published. Among others, Microsoft
Bing, Copilot, Notion’s integrated AI, and several of Ope-
nAI’s models [2]. A well-designed and engineered system
prompt significantly influences a model’s output and is often
kept confidential. Due to their crucial impact on functionality,
system prompts are often considered intellectual property (IP),
similar to the code of software [35]. Therefore, the protection
of system prompts is of high interest for providers of LLM
services. However, currently, there are no successful strategies
to prevent the stealing of system prompts, and all safeguard-
ing efforts could be evaded with carefully crafted prompt
injections that bypass all protection mechanisms [11, 16].

In this paper, we propose an alternative approach by lever-
aging prompt obfuscation. This technique aims to create a
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Figure 1: Comparison of the original versus obfuscated system prompt in both normal use (Figure 1a) and attack cases (Figure 1b).
The obfuscated prompt preserves functionality for valid user requests, yet remains unusable when stolen—effectively safeguarding
the confidentiality of the system prompt.

surrogate system prompt that achieves two primary goals: first,
it preserves the functionality of the original system prompt,
thereby maintaining task performance and utility; second, it
ensures no information leakage, meaning that even if the ob-
fuscated prompt is extracted, an attacker cannot draw conclu-
sions about the underlying original prompt. Our exploration
focuses on whether such an obfuscated prompt can effectively
conceal the instructions of a customized LLM. With only a
one-time additional expense and no additional training data,
we are able to build systems with functionality comparable to
that of conventionally prompted models.

For our prompt obfuscation, we find collisions in the con-
tinuous embedding space—soft prompt—that do not corre-
spond to a textual—hard prompt—representation and, there-
fore, prevent an attacker from extracting any meaningful text.
To achieve this, we optimize a new soft prompt so that it pro-
duces identical outputs for predefined samples while remain-
ing distinct from the original in its continuous representation.

As shown in Figure 1, our obfuscated prompt retains the
same functionality as the original while concealing the true
instructions. This prevents an attacker from recovering mean-
ingful text, even if the prompt is compromised.

We assess the obfuscated prompt using eight utility metrics,
divided into four lexical, two character-level, and two seman-
tic measures. In doing so, we capture a broad spectrum of
linguistic similarity, from surface-level overlaps to contextual
relationships. We show that we can maintain the same utility
as the original prompt. We also test our method against three
different deobfuscation methods, each assuming a varying
level of adversarial knowledge. The first is a black-box set-
ting with only query-based (API) access, whereas the two
white-box settings allow full visibility of model parameters
and direct access to the obfuscated prompt representation.

While the black-box and one of the white-box attacks are
generally not successful in extracting the original prompt, our
results indicate that in the other white-box attack, we can
extract individual words but no semantically meaningful text.
However, this attack scenario is extremely hard to replicate
as it requires white-box knowledge about the model and the
details about the obfuscated prompt in the embedding space,

and is mostly impractical.
We also conducted a case study involving an actual leaked

prompt from a custom GPT, demonstrating that our approach
is practical and effective even in real-world scenarios with
complex system prompts.

In summary, we make the following three key contribu-
tions:

• Prompt obfuscation. We propose an approach for
prompt obfuscation. We evaluate two versions, one in
the token (hard prompt) and one in the embedding space
(soft prompt). We show that with only little overhead,
we are able to construct a strong prompt obfuscation in
the embedding space.

• Utility Evaluation. We show that we can maintain simi-
lar utility as for the original prompt without significant
overhead. We also conduct an experiment with an actual
leaked real-world system prompt to show the practicality
of our obfuscation.

• Prompt deobfuscation. We explore three attacks on
our obfuscation method—covering both black-box and
white-box scenarios—and evaluate the ability of an ad-
versary to recover the system prompt from its obfuscated
representation under various threat models. Our results
indicate that in realistic scenarios, the adversary can-
not extract meaningful information from the obfuscated
prompt.

2 Background

Our system prompt obfuscation method builds on the concept
of prompt optimization. This optimization can be done both in
the token space (for hard prompts) and the embedding space
(for soft prompts) [23,43]. For this, we provide background on
LLMs, followed by a discussion of key prompting concepts



2.1 Large Language Models
We define a LLM as a function Mθ with parameters θ oper-
ating on t tokens x = {x1, . . . ,xt} with xi ∈ V for i = 1, . . . , t
and V being the LLMs vocabulary. These tokens refer to the
fundamental units of text processed by the model and rep-
resent linguistic elements such as words, parts of words, or
punctuation symbols.

In its operation, the LLM computes the likelihood of possi-
ble next tokens xt+1, yielding a probability distribution

pθ(xt+1 | x1, . . . ,xt). (1)

By iteratively predicting subsequent tokens, the LLM con-
structs coherent and contextually relevant text sequences
based on the input (i. e., prompt).

An LLM accepts a user input (such as a question) and pro-
duces a textual answer, whose correctness largely depends
on the model’s training. Modern LLMs are trained on mas-
sive datasets and utilize billions of parameters, which enables
them to accurately handle complex tasks, including generat-
ing code and translating languages. The model is only limited
by its context length, the maximum number of tokens a model
can process. In addition, factors like temperature and sam-
pling technique can impact the creativity and consistency of
the output.

2.2 Prompting
The usual interface for interacting with language models is
natural language, using so-called prompts. These denote struc-
tured textual inputs and function as input sequences that guide
the model generation process. A prompt serves both as an
instruction and a contextual anchor, enabling users to direct
the model’s output by framing the task or providing situa-
tional examples.

The efficacy of LLMs in generating meaningful and con-
textually appropriate responses can be significantly improved
by decomposing the prompts into different components, such
as previous user input or additional context. Among these,
the system prompt is a crucial textual directive that dictates
how the model should interpret and respond to subsequent
user inputs. It sets the interaction tone, outlines the expected
tasks or roles, and defines interaction objectives to ensure that
responses align with the desired outcomes of the system.

To formalize this, we denote a full prompt as x = (s,u),
where s is the system prompt and u is the user’s input, which
supplies the specific query or content. Thus, generating an
answer corresponds to computing

Mθ(x) = Mθ(s,u). (2)

Figure 2 demonstrates how the Llama 3.1 model fam-
ily [3] structures its prompts using tokens like <
|start_header_id|> and < |end_header_id|> to define the
prompt’s components. Additionally, predefined terms like

<|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date:

Today Date:

Talk like a pirate!

<|eot_id|><|start_header_id|>user

<|end_header_id|>

What does Darth Vader say to Luke in “The

Empire Strikes Back"?

<|eot_id|><|start_header_id|>assistant

<|end_header_id|>

Arrrr, Darth Vader be sayin’ somethin’ like

this to Luke Skywalker in “The Empire

Strikes Back": “Yer a long way from home,

Luke. A long way. And yer no match for the

dark side."

Figure 2: The official Llama 3.1 prompt template. ■ System
prompt; ■ User input; ■ Model response

“system", “user", and “assistant" define the roles of the system
prompt, user input, and model response, respectively. In this
example, the system prompt changes the response style of the
language model.

In practical applications, typically only the model’s re-
sponse is displayed to the end-users, while the system prompt
remains concealed. This approach is adopted to ensure a con-
sistent and predictable interaction flow, strengthen system
stability, and protect sensitive or proprietary information em-
bedded within system prompts, such as private data or IP.

2.3 Hard and Soft Prompts
In this work, we distinguish between hard prompts and soft
prompts. Hard prompts are the token representation of a text,
while soft prompts are the respective representation in the
embedding space of a model [27].

A soft prompt x̂ is the embedding of x, which is derived
by passing these hard prompts through the model’s token
embedding layer. Specifically,

x̂ = φ
(
x
)
∈ Rt×d , (3)

where d is the dimension of the embedding space, and the
function φ is the model’s token-embedding lookup table. This
transformation maps the discrete token sequence x into a
continuous, fixed-size vector space.

Reverse mapping. The reverse mapping from this continuous
vector space to the discrete token space is inherently limited
and is not straightforward. Vectors not explicitly present in
the lookup table cannot be accurately converted to specific
tokens. In this work, we leverage this property in one version



of our prompt obfuscation (soft prompt obfuscation) in order
to maintain the functionality of the systems prompt, while
making the textual interpretation nearly impossible. Using this
feature, we can use soft prompts to maintain the functional
capability of prompts while achieving significant obfuscation
of the textual content.

3 Prompt Obfuscation

Thus far, we have discussed the importance of system prompts
for instructing LLMs in practical applications. However, prior
research has demonstrated that these prompts are suscepti-
ble to leakage during interactions with the model [45]. Such
prompt extraction attacks are a significant security concern.
Companies invest considerable resources in high-quality sys-
tem prompts; if stolen, these prompts can expose proprietary
strategies, internal procedures, or safety mechanism [33].

Despite active research, defending against prompt extrac-
tion remains a challenging problem [40], with current de-
fenses often locked in a reactive and ongoing cat-and-mouse
game against evolving attack strategies. Rather than attempt-
ing to prevent leakage, we aim to ensure that even if a prompt
is leaked, its practical value for an adversary seeking to un-
derstand or repurpose it is limited. To achieve this, we focus
on obfuscating system prompts such that, upon leakage, they
cannot be meaningfully interpreted or repurposed.

3.1 Threat model

For our model, we consider an adversary targeting an LLM ini-
tialized with a confidential system prompt, aiming to extract
this prompt through model interactions. The adversary’s ob-
jective could be either to reveal internal model details—such
as timestamps, company context, or specific API instructions—
or simply to replicate the model’s behavior or parts of it. We
assume a practical black-box scenario where the adversary is
limited to query-only access to the model.

By obfuscating the system prompt, our goal is to reduce the
utility of the stolen prompt to the adversary. Even if success-
fully stolen, its usefulness is significantly diminished because
it cannot be easily interpreted or modified without compro-
mising its intended functionality.

3.2 Obfuscation Methodology

The key idea of the prompt obfuscation is to find a collision
in the prompt space. Specifically, given an original system
prompt s, we aim to construct an obfuscated version sobf that
(1) retains the original prompt’s functionality, while (2) being
unintelligible to an adversary.

This leads to two primary challenges. First, directly mea-
suring functionality is generally infeasible. To address this,
we define a set of representative user prompts U and compare

the outputs produced by the model conditioned on the origi-
nal versus obfuscated prompts. Second, we must ensure the
obfuscated prompt does not inadvertently reveal meaningful
information. To this end, we randomly initialize the obfus-
cated system prompt and iteratively optimize it to replicate
the intended functionality. This leads us to the following
optimization problem:

argmin
sobf

∑
u∈U

ℓ
(
s,sobf,u

)
,

where ℓ measures divergence in model outputs between orig-
inal and obfuscated prompts. While this approach does not
guarantee that the resulting prompt is devoid of meaning-
ful information, our empirical evaluation suggests that ob-
fuscated prompts occupy distinct regions in prompt space,
disconnected from the original prompt. This optimization
problem can be implemented at different stages within the
LLM. In this work, we design obfuscation methods for two
stages—hard prompts and soft prompts—as illustrated in Fig-
ure 3 and detailed next.

3.3 Hard Prompt Obfuscation
The first one operates in the token space (cf., Figure 3).
Once formulated in a white-box environment, obfuscated hard
prompts can be used in a black-box setting without requir-
ing access to an LLM’s embedding layer. They are human-
readable, allowing easy verification to ensure no sensitive
information is included.

In hard prompt obfuscation, we begin with a randomly
initialized token sequence sobf and optimize it so that, for the
set of user inputs u ∈U, the model’s outputs closely match
those produced by the original prompt. In particular, we define
ℓ as follows

ℓ
(
s,sobf,u

)
= LCE

(
Mθ(s,u),Mθ(sobf,u)

)
+LKL

(
Mθ(s,u),Mθ(sobf,u)

)
.

(4)

This captures how well the obfuscated prompt reproduces the
original responses. The cross-entropy (CE) ensures correct
output tokens, while the Kullback-Leibler (KL) divergence
encourages similar output probability distributions, acting as
a regularizer.

Our hard prompt obfuscation operates in the token space,
which makes direct gradient optimization difficult due to its
discrete nature. To address this issue, we utilize the Greedy
Coordinate Gradient (GCG) [46] algorithm, originally devel-
oped for creating adversarial attacks on aligned language mod-
els. GCG iteratively identifies and substitutes promising to-
kens by leveraging local gradients. Algorithm 1 demonstrates
the process for optimizing an obfuscated system prompt so
that its output closely matches that of the original prompt.
Beginning with a random token sequence sobf, the algorithm
iteratively refines it over a predetermined number of itera-
tions K.
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Figure 3: Overview of Prompt Obfuscation Method. In hard prompt obfuscation, the tokenized text is directly modified.
Conversely, soft prompt obfuscation involves updating the soft prompt within the continuous embedding space, providing more
flexibility.

To enhance the obfuscation of the system prompt using
contextual information, we employ a window approach. This
method optimizes not only individual tokens but also lever-
ages the autoregressive properties of LLMs by considering a
window of consecutive tokens instead of single tokens. We
hypothesize that a larger window size, by incorporating more
contextual information, could potentially lead to a more ef-
fective obfuscation that better preserves the functionality of
the original prompt. At each iteration, we measure how much
the responses differ over all W tokens in the window.

In particular, line 8 calculates the difference between the
obfuscated and original prompt, comparing them token by
token for each user input u. We here present the loss of the
w-th output token as ℓ

(
s,sobf,u

)
w. Once the total loss over

these W tokens has been aggregated, GCG updates the ob-
fuscated prompt by generating candidate token substitutions,
computing the loss again for each candidate, and selecting the
candidate that yields the smallest loss.

3.4 Soft Prompt Obfuscation

Hard prompt obfuscation is constrained by the finite token
space and the inherent meanings associated with each token,
which limit the ability to obfuscate prompts without altering
their intended functionality. To address these limitations, we
develop an approach that operates directly in the embedding
space, allowing for more fine-grained obfuscation (cf., Fig-
ure 3). Furthermore, soft prompt obfuscation benefits from the
complex reverse mapping between the continuous embedding
space and the discrete token space, since multiple distinct soft
prompts in the embedding space can map to a single hard
prompt.

Algorithm 1 Hard-Prompt Obfuscation

Require: s (original system prompt),
sobf (randomly initialized obfuscated prompt),
U (set of user queries),
K (obfuscation iterations),
N (number of output tokens),
W (window size)

1: M← ⌈N/W⌉ // Number of windows
2: n← 0 // Offset for windowing
3: for 1 to M do // Loop over output token windows
4: for 1 to K do // Obfuscation loop
5: L← 0
6: for w← 1+n to W +n do // Loop over window
7: // Compare w-th output token
8: l← ∑u∈U ℓ

(
s,sobf,u

)
w

9: L← L+ l
10: end for
11: sobf← GCG(sobf,L) // Update via GCG
12: end for
13: n← n+W
14: end for

This approach enables more fine-grained obfuscation by
leveraging the continuous embedding space. The primary
implementation change involves accessing the model’s em-
bedding layer—an adjustment that is relatively minor and
typically feasible with open-source models. We anticipate
that these obfuscated prompts will outperform hard prompts
in both utility and confidentiality. This improvement is due to
the more representative nature of the continuous space and the
ease of optimization within it, as opposed to discrete spaces.



To implement this approach, we adopt a slightly modified
optimization objective. Specifically, we optimize an embed-
ding vector ŝobf = φ(sobf)∈Rt×d rather than a token sequence.
Therefore we adapt the loss function ℓ described as

ℓ
(
ŝ, ŝobf,u

)
= LCE

(
Mθ\Emb(ŝ,u),Mθ\Emb(ŝobf,u)

)
+LKL

(
Mθ\Emb(ŝ,u),Mθ\Emb(ŝobf,u)

)
,

(5)

where Mθ\Emb describes the LLM that excludes the embed-
ding layer and ŝ being the original soft prompt.

Using the continuous nature of the embedding space, we
can directly optimize the soft prompt using gradient-based
algorithms. For this purpose, we adapt Algorithm 1 by re-
placing sobf with ŝobf and the loss function with the loss
function defined in Equation (5). Additionally, rather than
employing GCG for updating the obfuscated prompt in line
11, we directly apply gradient descent. This simplification
improves the efficiency of the optimization process within the
soft prompt space.

4 Experimental framework

In this section, we outline and justify the overall structure of
our experiments. First, we provide a general description of the
dataset used to generate outputs for the obfuscation process.
Next, we detail how we define and design the system prompts.
Finally, we explain how we measure the similarity between
outputs and prompts using the selected similarity metric.

4.1 Models and Dataset
To evaluate whether our obfuscation approach maintains the
same output behavior under varied user inputs, we rely on
datasets drawn from two distinct tasks:

• Question Answering (QA): TruthfulQA, TriviaQA [22]

• Summarization: CNN_dailymail [34], samsum [19]

TruthfulQA has 817 questions designed to test the LLM’s abil-
ity to provide truthful information. TriviaQA contains around
650,000 question-answer pairs collected from trivia websites.
CNN/DailyMail comprises roughly 312,000 news articles
(split between CNN and DailyMail) along with summaries.
Meanwhile, Samsum consists of approximately 16,000 anno-
tated dialogue summaries from messenger-like conversations.

We select two datasets for each task to ensure diversity in
the types of queries and text samples used to generate the
model’s outputs. Since our obfuscator relies on obtaining
model responses from both the baseline (unobfuscated) and
obfuscated versions of the system prompt, the data we use
does not need to be labeled with “ground-truth” answers or
summaries. Instead, we query the model directly with each
dataset sample using the baseline system prompt. The re-
trieved outputs (e.g., a model-generated answer or summary)
then serve as the target behavior during the obfuscation pro-
cess.

4.2 System Prompt Design
System prompts can contain many instructions resulting in
distinct output behavior, making it difficult to formalize tex-
tual directives. To address this, we conceptualize the model’s
system prompt by categorizing it into two distinct compo-
nents:

• Task: The specific function or activity that the system is
requested to perform. It defines the substantive objective
that the model aims to fulfill (e.g., “summarize the text").

• Style: This aspect characterizes the manner or mode in
which the model output is expressed. It describes a dis-
tinct flavor, character, or format of the model’s output
without affecting its functionality (e.g., “talk like a pi-
rate!").

By categorizing system prompts into Task and Style compo-
nents, we create a formalized framework for output analysis.
This categorization enables us to understand how the design
of the system prompts influences the generated output, thereby
allowing us to evaluate the effectiveness of obfuscation across
various types of system prompts.

To formalize system prompt elements, let T ∈ T represent
the task instructions (e.g., “summarize the text”) and S ∈ S
represent the style instructions (e.g., “talk like a pirate!”).
A system prompt s can be expressed as the concatenation
s=(T,S). However, in practice, T and S might be interspersed
or placed in different locations within the overall prompt.

We define three scenarios to explore how T and S are posi-
tioned in the prompt:

1. Full scenario: Both the task T and style S are included
together in the system prompt.

2. Style scenario: The style S remains in the system
prompt, while the task T is described in the user query.

3. Task scenario: Only the task T is included in the system
prompt, while the style S is omitted.

We provide examples of all these scenarios and a list of
styles and tasks in Appendix A. We designed these three
scenarios to systematically evaluate the impact of different
prompt configurations on model output. By isolating the Task
and Style components, we can assess the robustness of our
obfuscation method under varying conditions. This approach
mirrors realistic usage patterns, where the integration of task
and style instructions can differ significantly.

4.3 Similarity Metrics
Assessing the quality of obfuscated prompts is not straight-
forward. The outputs of similar inputs can be semantically
identical but very different on a character level. Therefore, to
accurately measure the fidelity of text generated by our model



using obfuscated versus standard prompts, we employ a vari-
ety of text similarity metrics. Each metric captures different
aspects of generated and reference output similarity:

• Lexical similarity: These metrics focus on how much
two texts overlap in terms of words, phrases, or n-grams.
They capture aspects such as direct lexical matches, word
order, and synonym/lemma matches. We use four differ-
ent metrics: BLEU, ROUGE-L, NIST_MT, METEOR

• Character-Level similarity: These metrics gauge simi-
larity at a finer granularity by focusing on how characters
align and can capture subtle morphological differences.
We use two different metrics: characTER, ChrF

• Semantic similarity: These metrics encode the text
into high-dimensional vectors, capturing contextual and
semantic relationships. We use two different metrics:
BERTScore, Embedding-level cosine similarity

We give detailed explanations of each metric in Appendix F.1.

Prompt Similarity Metrics. To assess the similarity between
the obfuscated prompt sobf and the original system prompt
s, we utilize a range of metrics analogous to those used for
output similarity. Given that our system prompts are rela-
tively concise—typically consisting of approximately ten to-
kens—the corpus-level metrics previously introduced may
lack the necessary sensitivity. Therefore, we use the follow-
ing more refined metrics to measure the similarity alongside
manual evaluations of the obfuscated system prompts:

• Character-Level similarity: Levenshtein distance,
Longest Common Subsequence (LCS)

• Lexical similarity: Jaccard Index

• Semantic similarity: Embedding-level cosine similarity

These metrics collectively help us determine if obfuscated
prompts retain any discernible information from their conven-
tional counterparts, encompassing identical tokens, substrings,
or semantic meanings. More details about each metric can be
found in Appendix F.2.

5 Evaluation

In this section, we evaluate how effective our obfuscation tech-
nique is by comparing the performance of obfuscated system
prompts with conventional system prompts. We assess two
main aspects: first, how well the obfuscation conceals the sys-
tem prompt, and second, how the model performs when using
these obfuscated system prompts in both hard and soft cases.

5.1 Hard Prompt Obfuscation
To evaluate the effectiveness of obfuscated system prompts,
we generate outputs using conventional and obfuscated
prompts. These outputs are divided into training and testing
sets. During optimization, the obfuscated prompt is refined us-
ing training data, with performance verified on the test subset
after each iteration using the established similarity metrics.

Dataset. We focus on a question-answering (QA) task us-
ing the TruthfulQA dataset [29] as a preliminary experiment.
TruthfulQA is designed to test LLM’s ability to provide truth-
ful information. From its 817 available samples, we selected
800 to ensure a consistent evaluation set for our experiments.
These were then divided into 640 samples for training and
160 for testing, following an 80:20 train-test split.

LLM. We consider the 8 billion parameter version of the
instruction-tuned Llama 3.1 model for our evaluation [3]. The
model is loaded in its quantized 4-bit version to reduce mem-
ory requirements. Nucleus sampling is used for generating
responses, set at a topp value of 0.95 and a temperature of
0.7 to balance response diversity and stability. Each output
sample has 125 tokens.

Setup. The optimization parameter K is set with a maxi-
mum of 10 iterations and the token count N is set to 15, as
detailed in Algorithm 1, balancing performance and quality
of the result. Since increasing the window size raises GPU
memory requirements, we selected the largest window size
feasible W = 5 in all our experiments. The obfuscated sys-
tem prompt sobf is initialized with a random sequence of 10
tokens for each experiment. For evaluating the model’s per-
formance, we generate five outputs per test instance using
both conventional and obfuscated prompts. We then perform
pairwise comparisons between each conventional output and
every obfuscated output for each test sample. We use the
all-mpnet-base-v2 model to generate embeddings for natural
language evaluation.

Results. Table 1 presents our evaluation results for the Truth-
fulQA dataset, covering the three scenarios discussed in Sec-
tion 4.2. Outputs generated with a blank system prompt serve
as a baseline, helping to determine the optimized prompt’s
ability to emulate the desired response. In this case, all obfus-
cated parts are left blank, with the specific sections varying by
scenario. To have a more complete baseline, we measure the
output similarity where we rely solely on the original system
prompt. In this case, we generate outputs by using a different
seed and compare it to another set of outputs generated from
the same system prompt but with a previously used seed. For
both scenarios, we sample five outputs, matching the num-
ber tested for the obfuscated version, and compute our scores
using the same procedure. Ideally, the obfuscated versions
maintain performance on par with the original prompt, while
the blank version—having only the remaining portions of the
prompt—tends to yield inferior results.



TruthfulQA

Metrics Full Style Task
blank obf original blank obf original blank obf original

BLEU (↑) 18.07 33.00 37.06 17.51 35.48 35.95 41.94 48.03 48.92
ROUGE-L (↑) 0.28 0.37 0.41 0.26 0.38 0.39 0.45 0.48 0.51
METEOR (↑) 0.32 0.44 0.46 0.27 0.44 0.43 0.53 0.55 0.57
NIST_MT (↑) 2.10 3.22 3.14 1.65 3.29 3.18 3.47 3.70 3.77

CharacTER (↓) 0.78 0.69 0.67 0.83 0.69 0.70 0.63 0.60 0.58
ChrF (↑) 40.01 47.82 49.03 35.96 47.92 47.84 53.65 55.95 56.56

BERTScore (↑) 0.86 0.90 0.90 0.86 0.90 0.90 0.91 0.92 0.93
Cosine (↑) 0.73 0.80 0.80 0.69 0.79 0.80 0.85 0.86 0.86

Table 1: Hard Prompt Obfuscation. This table compares
the output similarity between obfuscated prompts and blank
prompts, measured against conventional system prompts on
the TruthfulQA dataset. We provide a baseline using outputs
generated with a blank prompt and a reference using the orig-
inal prompt. Results from outputs calculated with obfuscated
values are highlighted in bold.

In each experiment, we collect the best values for each
metric throughout the full optimization process, as a system
owner would select the best-performing obfuscated system
prompt. For the Full and Style scenarios, which include multi-
ple style descriptions, we average the results across all system
prompts to enhance the generalizability of our evaluation.

It can be seen, that our approach consistently achieves
scores that are comparable to those of the original prompt,
indicating that our obfuscated prompts perform as effectively
as the original ones. Across all three scenarios, there is an im-
provement in all eight metric values compared to the baseline.
In the Task scenario, where no style description is provided,
the improvement is modest. This is because the model is
able to infer the QA task from the dataset samples without
requiring a system prompt, as anticipated.

In addition to examining the functionality of an obfuscated
system prompt, it’s important to assess their confidentiality to
determine whether they reveal any information about the orig-
inal prompt. We report the similarity between system prompts
in Table 2. As a baseline, we compare the conventional system
prompt to a random token sequence, expecting the obfuscated
prompt to show a comparable or higher degree of similarity. It
can be seen that almost in all the scenarios, the obfuscated sys-
tem prompts are more similar to the conventional one for all
four metrics, indicating some information leakage during the
obfuscation. Additionally, we manually reviewed and com-
pared the obfuscated system prompts with their conventional
versions, which confirmed our findings. Some examples of
the obfuscated system prompts are shown in Table 3.

Although obfuscated versions significantly differ from the
original system prompt, related words can still be identified.
We argue that attackers could reconstruct the non-obfuscated
system prompt from the obfuscated version when it is leaked,
which directly contradicts our primary objective of safeguard-
ing the system prompt through obfuscation. To address this
issue, we evaluate the trade-off between confidentiality and
functionality preservation in our hard prompt obfuscation

TruthfulQA

Metrics Full Style Task
rand obf rand obf rand obf

Levenshtein (↑) 0.11 0.19 0.13 0.20 0.13 0.20
LCS (↑) 0.12 0.07 0.18 0.30 0.15 0.25

Jaccard Index (↑) 0.00 0.22 0.00 0.10 0.00 0.07

Cosine (↑) 0.28 0.41 0.11 0.49 0.29 0.30

Table 2: Hard Prompt Obfuscation. Prompt similarity be-
tween obfuscated prompts and a selected random prompt
against conventional system prompts on the TruthfulQA
dataset. We average over all style prompts, if applicable.

method by introducing a fluency regularization term to the
total loss. This additional loss term aims to reduce the read-
ability of the obfuscated hard prompt by leveraging the Neg-
ative Log-Likelihood (NLL) loss. The NLL measures how
well a probability model predicts a sample, with higher values
indicating lower fluency and less likely sequences according
to the model. Consequently, we incorporate this loss term into
the total loss before updating the obfuscated system prompt
using GCG in line 12, as outlined in Algorithm 1:

L← L−NLL(sobf).

Here, L represents the total loss in Algorithm 1. We subtract
the NLL loss to optimize for higher values, which correspond
to reduced readability.

We find that we are able to consistently reduce the read-
ability of the obfuscated hard prompts. However, this results
in lower output similarity over all metrics for all scenarios.
These findings together showcase the inherent limitations of
discrete optimization for obfuscation: information of the spe-
cific output format/behaviour has to be encoded in the system
prompt otherwise we do not preserve functionality. Our sec-
ond obfuscation approach, which involves optimization in the
embedding space, seeks to overcome this limitation by lever-
aging the reverse mapping from a continuous vector space to
the discrete token space.

Reply with a pirate accent.
ScødCreatureáhnout-equ narration Speak pirate tone

Reply with a southern USA accent.
_MB/Xelpnn’> nSpeak pretending ur eas Southern

Answer like a robot.
.j compliments.Use robotic behavior.U_swCos Naomi XP

Table 3: Hard-Prompt Obfuscation. Examples of different
styled system prompts and their obfuscated versions.

5.2 Soft Prompt Obfuscation
To evaluate the soft prompt obfuscation method, we utilize
the same set of stylistic prompts introduced earlier. Our eval-



uation covers both question answering (QA) and summariza-
tion tasks.

Dataset. For the QA task, in addition to TruthfulQA, we use
TriviaQA [22] as well. For the summarization task, we use
the CNN/DailyMail [34] and samsum [19] datasets. We again
use 640 samples during obfuscation and 160 samples for
evaluation for each dataset.

Setup. Our optimization process employs the Adam opti-
mizer [25] with a learning rate of 0.01. All other hyperparam-
eters remain consistent with those specified in the previous
subsection 5.1.

Results. Table 4 summarizes our findings for the Truth-
fulQA and CNN/DailyMail datasets. The results for the other
datasets can be found in Appendix B. In all three scenarios, we
observe an improvement in our obfuscated prompt across all
eight measured values compared to the blank baseline for all
datasets. Specifically, we achieve even better results than our
hard prompt obfuscation for the TruthfulQA dataset. These
outcomes highlight the effectiveness of using soft prompts
and suggest a general robustness across tasks and styles. In
comparison to the original prompt output, we are within the
same range and, in some cases, even consistently better. This
is typically the case for the first group of metrics, the lexical
similarity. Although this improvement might still be attributed
to randomness in our sampling strategy, we hypothesize that
the soft prompt version may actually perform more consis-
tently than the hard prompt or the original version. This aligns
with the findings of Khashabi et al. [23], which suggest that
continuous prompts can potentially solve tasks better.

Since this version of prompt obfuscation operates in the
soft prompt space, we do not directly compare the textual
representations of the original ŝobf and its respective ŝ, as
converting from soft to hard prompts is a challenging task.
However, we evaluate the effectiveness of this type of obfus-
cation against deobfuscation attacks in Section 6. To illustrate
this effectiveness, we provide an example of the different
responses produced by a specific system prompt for the Truth-
fulQA dataset in Appendix B Figure 4. It is evident that the
optimized soft system prompt successfully captures the de-
sired style, whereas the blank system prompt fails to do so.

Ablation Studies. We conduct ablation studies to further
gain insights into the effectiveness and generalizability of
our soft prompt obfuscation technique. To this end, we test
our optimization algorithm with different hyperparameters to
evaluate their impact on performance.

First, we examine the influence of the dataset size by dou-
bling the number of samples of the TriviaQA dataset1 and
re-running soft prompt obfuscation for all scenarios and styles.
The resulting output similarity scores remained nearly iden-
tical to those reported in Table 11, demonstrating that our

1The TruthfulQA dataset does not contain enough samples to double the
size

method is robust to dataset scale and does not appear to over-
fit to the initial sample size.

We further investigate the impact of the window size W ,
evaluating W = [4, 3, 2, 1] using the TruthfulQA dataset.
We observed minimal performance differences across these
tested window sizes, indicating that smaller window sizes can
achieve comparable effectiveness for the relatively concise
system prompts used in our main experiments.

5.3 Case Study—Leaked Custom GPT System
Prompt

To demonstrate the generalizability and effectiveness of our
soft prompt obfuscation method in real-world scenarios, we
selected a leaked system prompt from a custom GPT. Custom
GPTs provide a readily available source of such “in-the-wild"
system prompts, many of which have been publicly exposed
due to prompt injection attacks [17]. For this study, we as-
sumed the perspective of a model deployer with white-box
access to their own system prompt, aiming to obfuscate it.
We randomly selected a leaked system prompt characterized
by a stylistic theme rather than a specific task. Specifically,
we chose the prompt from the Manga Miko Anime Girlfriend
GPT (the complete system prompt is shown in Appendix C).
We utilized the input and generated output examples from the
TruthfulQA dataset, applying the same obfuscation technique
described in Section 5.2. However, the obfuscation method
can be applied with any suitable dataset representative of the
desired interactions.

Results. We are able to successfully obfuscate the leaked
system prompt while maintaining the same output functional-
ity. Table 5 shows the functionality of our obfuscated prompt
compared to both the blank baseline and the original refer-
ence. We also provide an output example in Appendix C.
These results illustrate the effectiveness of our approach in a
real-world setting.

5.4 Comparison to Finetuning

To provide a comprehensive evaluation of our prompt ob-
fuscation approach, we compare its performance against
finetuning. Finetuning is a well-established and powerful
method for adapting LLMs to specific downstream tasks or
stylistic requirements, often serving as an alternative to sys-
tem prompts. While traditional finetuning can be resource-
intensive, parameter-efficient finetuning (PEFT) methods
have emerged to mitigate these costs.
In this comparison, we specifically employ Low-Rank Adapta-
tion (LoRA) [13,21], a method that injects trainable low-rank
decomposition matrices into the layers of a pre-trained model.
This evaluation aims to compare the output utility achieved by
our obfuscated system prompts against a model specifically
adapted through finetuning.



TruthfulQA CNN/DailyMail

Metrics Full Style Task Full Style Task
blank obf original blank obf original blank obf original blank obf original blank obf original blank obf original

BLEU (↑) 18.07 40.32 37.06 17.51 40.60 35.95 41.94 55.16 48.92 13.79 46.57 42.39 13.31 48.55 42.07 31.65 69.04 64.41
ROUGE-L (↑) 0.28 0.42 0.41 0.26 0.42 0.39 0.45 0.54 0.51 0.24 0.47 0.44 0.29 0.49 0.44 0.36 0.68 0.64
METEOR (↑) 0.32 0.48 0.46 0.27 0.47 0.43 0.53 0.61 0.57 0.24 0.53 0.50 0.24 0.54 0.50 0.41 0.76 0.70
NIST_MT (↑) 2.10 3.57 3.14 1.65 3.68 3.18 3.47 4.10 3.77 1.16 4.10 3.88 0.57 4.23 3.81 2.06 5.03 4.57

CharacTER (↓) 0.78 0.65 0.67 0.83 0.66 0.70 0.63 0.53 0.58 0.88 0.61 0.65 0.94 0.59 0.65 0.79 0.39 0.45
ChrF (↑) 40.01 51.20 49.03 35.96 50.98 47.84 53.65 60.04 56.56 31.44 55.40 52.74 30.67 56.70 52.72 44.52 72.49 67.94

BERTScore (↑) 0.86 0.91 0.90 0.86 0.91 0.90 0.91 0.93 0.93 0.86 0.92 0.91 0.87 0.92 0.91 0.90 0.96 0.95
Cosine (↑) 0.73 0.82 0.80 0.69 0.82 0.80 0.85 0.87 0.86 0.63 0.85 0.83 0.66 0.85 0.83 0.73 0.93 0.92

Table 4: Soft Prompt Obfuscation. Output similarity between obfuscated prompts and blank prompts against conventional
system prompts on the TruthfulQA dataset for the QA task and CNN/DailyMail dataset for the summarization task. The results
from the output calculated with the obfuscated values are shown in bold.

Metrics Manga Miko

blank obf original

BLEU (↑) 28.06 40.39 36.34
ROUGE-L (↑) 0.32 0.39 0.35
METEOR (↑) 0.36 0.47 0.44
NIST_MT (↑) 2.00 3.37 3.28

CharacTER (↓) 0.77 0.68 0.72
ChrF (↑) 42.37 48.88 47.46

BERTScore (↑) 0.88 0.90 0.89
Cosine (↑) 0.74 0.80 0.77

Table 5: Case Study. Output similarity between obfuscated
prompts and blank prompts against the GPT store leaked
system prompts on the TruthfulQA dataset.

Setup. For this comparison, we utilize the datasets detailed in
Section 5.2. LoRA adapters are finetuned using input-output
examples generated by applying the conventional system
prompt to the training portion of these datasets. The perfor-
mance of the finetuned model is then evaluated by comparing
its outputs to those generated using the conventional system
prompt on the test set. For LoRA, we employ default hyper-
parameters: a rank of 8, alpha of 16, and an initial learning
rate of 0.0002. All other hyperparameters remain consistent
with those described in Section 5.2

TruthfulQA

Metrics Full Style Task
obf finetune obf finetune obf finetune

BLEU (↑) 40.32 40.88 40.60 40.58 55.16 53.31
ROUGE-L (↑) 0.42 0.43 0.42 0.42 0.54 0.54
METEOR (↑) 0.48 0.48 0.47 0.47 0.61 0.59
NIST_MT (↑) 3.57 3.49 3.68 3.59 4.10 4.09

CharacTER (↓) 0.65 0.65 0.66 0.66 0.53 0.54
ChrF (↑) 51.20 50.98 50.98 50.73 60.04 58.95

BERTScore (↑) 0.91 0.91 0.91 0.91 0.93 0.93
Cosine (↑) 0.82 0.82 0.82 0.81 0.87 0.87

Table 6: Finetuning. Output similarity between obfuscated
prompts and finetuned LoRA adapters against conventional
system prompt on the TruthfulQA dataset for the QA task.

Results. Table 6 presents the output similarity scores for the
TruthfulQA dataset when comparing our soft prompt obfusca-
tion to finetuned LoRA adapters, with comprehensive results
for all datasets provided in Appendix D. The evaluation in-
dicates that the utility achieved by the finetuned models is
largely comparable to that of our obfuscation method across
most scenarios and metrics. For the Task scenario, we observe
that finetuned models consistently yield marginally lower sim-
ilarity scores, though these differences are minor.
While finetuning demonstrates strong utility, our prompt ob-
fuscation approach maintains this level of performance while
offering practical advantages. Firstly, the storage overhead for
LoRA adapters is considerably greater; in our experiments,
the finetuned adapters are approximately 328 times larger
than the corresponding obfuscated soft prompt embeddings.
Secondly, deploying finetuned models typically requires mod-
ifications to the inference pipeline, such as loading and man-
aging adapter weights or merging them into the base model.
In contrast, our obfuscated system prompts, which directly
replace the conventional textual system prompt, can be inte-
grated with minimal changes.

6 Deobfuscation

Following our exploration of prompt obfuscation, in this sec-
tion, we aim to determine whether an adversary can uncover
information about the underlying conventional system prompt
while interacting with an LLM using obfuscated system
prompts. While an attacker might consider directly reusing a
leaked obfuscated prompt, soft prompt obfuscation introduces
substantial challenges for an adversary. Extracting an embed-
ding vector from a deployed model is difficult, often requiring
privileged model access. More critically, an obfuscated soft
prompt embedding is inherently tied to the specific token
embedding layer of the model for which it was optimized,
severely limiting its transferability. Therefore, we analyze an
adversary’s ability to deobfuscate obfuscated system prompts
to extract meaningful information about, or reconstruct, the
conventional system prompt. This is essential to examine the



effectiveness of the obfuscation method in real-world scenar-
ios. As the capabilities of the model allow for a wide range
of possible attack strategies, we consider adversaries with
different knowledge.

Limited-access. In the first scenario, we consider a black-
box setting in which the attacker only has API access to the
LLM. This situation is typical of many commercial LLMs,
such as ChatGPT, where the internal workings of the model
are not disclosed to the user. We assume that the adversary
can generate multiple responses from the target LLM, which
operates using an obfuscated system prompt. In this practical
scenario, the main aim of obfuscation is to prevent the model
from revealing useful details about the initial system prompt.

Full-access. In the second scenario, we consider a white-box
setting, where the attacker has full knowledge of the model
and access to it. This scenario is not entirely unrealistic, as
many systems utilize open-source models, such as those in
the Llama family, effectively granting the attacker access to
the model’s internal structure and parameters. Furthermore,
we assume that the adversary has access to the obfuscated
prompt. Although obtaining this information could be chal-
lenging in practice, it should not be deemed impossible. This
scenario helps us to evaluate the limitations of the proposed
obfuscation method.

Within these scenarios, we consider three different attack
methods, which are introduced next. For all attacks, we will
focus on soft prompt obfuscation due to its superior perfor-
mance. Specifically, we evaluate the robustness of the soft
prompt obfuscations developed for the ’full’ scenario system
prompts, utilizing the versions generated across all datasets
discussed in our evaluation.

6.1 Prompt Injection
In the first attack, we attempt to extract the system prompt
directly from the model by leveraging prompt injection at-
tacks. The core idea behind this approach is that the model
inherently understands the obfuscated system prompt since it
must process it during inference. Consequently, an adversary
can craft a series of prompts designed to reveal how the model
interprets the obfuscated input.

To this end, we prompt the model to reveal its instructions.
Importantly, as we are primarily interested in the susceptibility
of the model to such an attack, we do not explicitly prompt
the model to keep the system prompt secret. However, the
model’s alignment could still protect the system prompt. To
address this, we adopt the approach proposed by Zhang et
al. [45], which provides a systematic way to evaluate black-
box prompt extraction attacks and a curated dataset that has
proven effective in extracting hidden prompts.

Threat model. For this attack, the adversary is only given
query access to the model. There is no limit on the number
of queries the adversary can make. The only constraint is

the model’s context size. The adversary cannot alter model
parameters, such as temperature, that influence the model’s
output. While these parameters affect the generated responses
and could thereby influence the attack’s observed outcome,
they are considered fixed from the attacker’s perspective dur-
ing their interaction.

Setup. In line with Zhang et al., we use their set of 105 care-
fully designed attack queries, each aiming to elicit the hidden
prompt. For each query, we sample five responses from the
target model. We then utilize the fine-tuned DeBERTa model
described in their paper to rank the likelihood that each re-
sponse accurately reflects the original system prompt. We
then select the top-ranked output as our final extracted guess.

To evaluate success, we adopt both the exact-match and
approximate-match criteria from the original paper, which
measure how much of the original prompt is recovered in
each candidate. The exact-match criterion identifies success-
ful extractions where all sentences of the original prompt
appear verbatim in the model’s response, indicating a full
leak, while the approximate-match criterion checks if a sub-
stantial portion (at least 90%) of the original prompt’s token
sequence has been recovered. Formally, for an extraction
prompt e and extracted guess g = Mθ(s,e), the exact-match
metrics is defined as:

exact
(
s,g

)
= 1 [∀sentence s of s : s is a substring of g] ,

and the approximate-match metric as:

approx
(
s,g

)
= 1

[
|LCS(tokens(s), tokens(g))|

|tokens(s)|
≥ 90%

]
,

where LCS denotes the longest common subsequence. We
further manually review the outputs.
For comparison, we repeat the full attack on the model
equipped with the conventional system prompt and evaluate
the output.

Results. Table 7 summarizes our findings averaged across all
datasets. It shows that for the conventional (non-obfuscated)
system prompt, the prompt injection attacks frequently suc-
ceeded in leaking the full prompt across all styles. For in-
stance, the attacks targeting the ’pirate’ style prompt yielded
15.50 exact matches and 27.25 approximate matches (out of
105 attack attempts per dataset). Similar success rates were
observed for the other styles. In contrast, with the obfuscated
prompt, there were no successful leaks under either the exact-
match or approximate-match metrics. In other words, none
of the 105 attack queries were able to recover any part of the
obfuscated system prompt across the datasets.

In addition, we repeated our evaluation with a more lenient
approximate-match threshold of 50% to capture more subtle
leaks. Except for one instance under the ’poem’ style obfus-
cated using the TruthfulQA dataset, no leaks were flagged
across all other prompt styles and datasets. In that single



Style Normal Obfuscated
exact approx. exact approx.

pirate 15.50 27.25 0.00 0.00
southern_usa 6.50 18.50 0.00 0.00
poem 6.75 20.75 0.00 0.00
stutter 2.50 11.50 0.00 0.00
david_attenborough 18.00 26.00 0.00 0.00
robot 15.00 18.75 0.00 0.00
friendly 11.25 17.25 0.00 0.00

Table 7: Prompt Injection. Comparison of successful prompt
leaks (out of 105 attacks) under normal vs. obfuscated
prompts, evaluated with both exact-match and approximate-
match criteria. Results are averaged over all datasets

case, one extraction was flagged solely due to the use of the
word “poetic", but a manual inspection confirmed that this did
not refer to any actual instructions from the hidden system
prompt.

Figure 5 in Appendix E provides a concrete example of
these results: while a single extraction prompt can induce the
model to restate the entire original instruction for the conven-
tional system prompt, the obfuscated version reveals only a
brief roleplay response that omits critical instructions. Overall,
these results show that our obfuscation method significantly
mitigates the risk of prompt injection attacks aiming to extract
the system prompt.

6.2 Token Space Projection
Next, we consider a white-box attack and grant the attacker
access to the obfuscated prompt and the language model. Our
goal is to recover a comprehensible hard prompt from the
obfuscated soft prompt. Therefore, we utilize access to the
token embedding layer of the model to project the obfuscated
token embeddings back into discrete tokens.

Attack. The basic idea of the attack is to use the model’s token
embedding layer as an inverse lookup table. However, a di-
rect mapping is not possible because the relationship between
the hard and soft prompt space is not bijective. To approx-
imate this, we thus map each obfuscated embedding vector
to the closest vector in the embedding layer, which is then
translated back into the token space. As our distance measure,
we experiment with both Euclidean and cosine distances. To
evaluate our approach, we compare the reconstructed token
sequence from the projected embeddings with the original
system prompt using prompt similarity metrics introduced in
Section 4.3. As a baseline, we also measure how closely the
conventional prompt aligns with a randomly generated token
sequence, providing a lower bound for comparison.

Results. As shown in Table 8, the reconstructed prompts via
both Euclidean and cosine projections remain largely com-
parable to the random baseline, indicating no significant ad-

Metrics rand euclidean proj. cosine proj.

Levenshtein (↑) 0.12 0.17 0.17
LCS (↑) 0.13 0.19 0.20

Jaccard Index (↑) 0.00 0.04 0.04

Cosine (↑) 0.27 0.26 0.24

Table 8: Projection. Evaluation of euclidean and cosine pro-
jections to the original prompt against a random baseline
averaged over all style prompts and datasets

vantage in recovering meaningful text. A manual review of
the projected outputs confirms that a vast majority of tokens
across styles and datasets remain unchanged from their ran-
dom initialization, suggesting that the gradient updates in the
embedding space do not meaningfully align with interpretable
tokens. For the instances where tokens do differ, we occa-
sionally observe isolated tokens resembling words from the
original prompt (e. g., “summary"). However, these appear
embedded within largely nonsensical sequences, rendering
the overall projected text semantically incoherent and mak-
ing it practically impossible to distinguish potentially useful
fragments from random artifacts without prior knowledge of
the original prompt.

Overall, these findings suggest that a direct projection of
the obfuscated embeddings does not yield useful insight into
the original system prompt.

6.3 Fluency optimization

Finally, building on the previous attack, we design a strong
optimization-based attack to optimize for a semantically
meaningful hard prompt. This approach attempts to convert
the obfuscated system prompt back into a human-readable
format by incorporating a fluency regularization term.

Threat Model. Again the adversary has knowledge of the
embedded obfuscated system prompts, as well as access to
the underlying language model. In particular, the token em-
bedding layer and the output logits are utilized.

Attack. This attack aims to improve the readability of the
projected obfuscated system prompt, which is initially repre-
sented as a nearly random token sequence (see Section 6.2).
To accomplish this, we leverage our obfuscation method de-
scribed in Section 3 by adding a Negative Log-Likelihood
(NLL) loss term to the total loss. This modification is applied
before updating the obfuscated system prompt via gradient
descent in line 12, as outlined in Algorithm 1. The revised
total loss is defined as:

L← L+NLL
(
proj(ŝobf)

)
, (6)

where L represents the total loss in Algorithm 1, and proj is
the projection function. The initial component of this total



Metrics rand deobf

Levenshtein (↑) 0.12 0.16
LCS (↑) 0.13 0.20

Jaccard Index (↑) 0.00 0.03

Cosine (↑) 0.27 0.20

Table 9: Fluency Soft Prompt Optimization. Evaluation of
deobfuscated system prompts to the original prompts against a
random baseline averaged over all style prompts and datasets.

loss maintains output consistency, while the added NLL term
optimizes for a more readable projected system prompt.

Setup. For this deobfuscation, we use unseen samples from
each dataset to avoid bias from the initial obfuscation2. At
each optimization step, responses from the obfuscated prompt
are compared against those from the optimized embedding.
The underlying language model calculates the NLL of the
projected optimized system prompt. Using these loss terms,
we optimize the embedding with the Adam optimizer. Ad-
ditionally, we calculate system prompt similarity using the
previously introduced metrics to assess how closely our op-
timized projected system prompt matches the conventional
one. Although the adversary lacks knowledge of the conven-
tional system prompt, this evaluation quantifies the general
effectiveness of our approach.

Results. We present our findings in Table 9. We find that
regardless of style prompt or dataset, this soft prompt op-
timization technique does not produce system prompts that
reveal information about the conventional system prompt ex-
cept for the isolated tokens encountered in Section 6.2. We
hypothesize that this outcome is due to the lossy nature of the
inverse mapping of the embedding layer, as minor changes
in the embedding rarely result in new projected tokens. To
verify this, we directly perform the optimization, including
the regularization, on the projected hard prompt next.

Hard prompt optimization. Instead of directly optimizing
the embedded system prompt, we optimize the projected hard
prompt tokens using GCG. This strategy allows us to over-
come the inherent limitations of token space projection. Con-
sequently, the loss function is slightly adjusted by removing
the projection step prior to optimization L← L+NLL

(
sobf

)
.

Results. Table 10 summarizes our findings. This method
enables us to generate system prompts with significantly
higher similarity to the conventional system prompt across all
style prompts.

Additionally, Figure 6 in Appendix E presents two ex-
amples of successful system prompt deobfuscations for the
TruthfulQA dataset, demonstrating our ability to effectively

2For system prompts obfuscated using TruthfulQA, which has limited
samples, TriviaQA samples are used for deobfuscation due to the shared task.

Metrics rand deobf

Levenshtein (↑) 0.12 0.20
LCS (↑) 0.13 0.22

Jaccard Index (↑) 0.00 0.06

Cosine (↑) 0.27 0.34

Table 10: Fluency Hard Prompt Optimization. Evalua-
tion of deobfuscated system prompts to the original prompts
against a random baseline averaged over all style prompts and
datasets.

reverse-engineer the embeddings and retrieve comprehensible
information about the conventional system prompt.

It is evident that we are able to deobfuscate some partially
understandable information about the original system prompt,
such as “pirate accent” and “southern accent.” However, the
overall output does not retain the same semantic meaning,
making it difficult to determine what is part of the original
system prompt. Furthermore, we primarily use this evaluation
to demonstrate the limitations of our obfuscation method in a
worst-case scenario. In reality, replicating this attack scenario
is very unrealistic, as it requires white-box knowledge of the
model and the exact obfuscated soft prompt.

7 Related Work

The vulnerability of LLM-integrated systems has gained great
attention since the rise of new foundation models such as
GPT3.5 [7], GPT4 [36], and Llama 3.1 [3]. In this section,
we explore potential exploits and weaknesses of LLMs and
generative models in general on model level and integrated
into systems.

Attacks against LLMs One of the most common attacks
against LLMs are (indirect) prompt injection attacks where
the attacker tries to override the original instructions in the
prompt with specifically designed inputs [10]. The strategies
to achieve this range from shifting the attention, pretending
responsibilities of the LLM, or escalating hypothetical priv-
ileges [31]. Even across different domains, such as manipu-
lated visual and audio, inputs can be used to misguide multi-
modal LLMs [6]. Despite defenses, ranging from filtering, for
example, using the perplexity of the input [4], sanitization [5],
or even fine-tuning [32] and adversarial training [16], all these
methods have been shown to be insufficient to prevent prompt
injection attacks.

Another class of attacks are attacks that break the alignment
of a model [26]. LLMs are typically trained via Reinforce-
ment learning from human feedback (RLHF) [20] to prevent
the model from exhibiting unethical behavior. For example, an
LLM’s output should not contain racist or sexist answers, but
should also not answer with detailed instructions about ques-



tions such as how malware can be distributed. An orthogonal
class of attacks are attacks that aim to receive information
about the model’s training data [9], such as personal informa-
tion [24], or, in the case of image generation models, images
that are used within the training data of a model [8].

Prompt Optimization The performance of an LLM heavily
depends on the input prompt quality. Thus, prompts are often
manually engineered by experts to contain detailed instruc-
tions and domain-specific information. However, this can be
tedious and resource-intensive. Therefore, several automatic
prompt optimization methods have been introduced to auto-
matically discover highly efficient prompts. One approach to
prompt optimization leverages reinforcement learning tech-
niques [12,28,44]. These methods use reinforcement learning
frameworks to iteratively improve prompt quality by explor-
ing various strategies for prompt generation and modifica-
tion. Another set of methods employs adversarial learning
techniques [15], optimizing prompts through a game-like in-
teraction between generators and discriminators to enhance
in-context learning capabilities.

One prominent approach is the strategic planning method
employed by PromptAgent [41], which uses Monte Carlo
tree search to navigate the prompt space and generate expert-
level prompts through iterative error feedback and simulation.
Gradient-based optimization techniques also play a signifi-
cant role in prompt optimization. For instance, the authors
in [43] use gradient-based discrete optimization for tuning
text prompts, while [37] applies gradient descent and beam
search to refine prompts based on feedback from training data.

8 Discussion

System adaptation. Our evaluation demonstrates that we can
effectively obfuscate system prompts within the embedding
space to protect IP without significantly changing the under-
lying system. Utilizing the soft prompt space differs from
the typical deployment of systems that receive solely textual
input. Although a hard prompt obfuscation would, therefore,
be preferred, we verified in this paper that this version does
not have the required performance. However, for adapting the
system, a service provider only needs to change the input to
the model from a token vector to an embedding vector for the
system prompt, which many frameworks inherently support.
In addition, this will make it much harder for an attacker to
extract the underlying system prompt as this would require
access to the embedding layer of the running system.

Real-world prompts. By using a real extracted prompt from
a custom GPT, we showed that obfuscation is also feasible
for a long and complex system prompt. In our example, we
demonstrate that we achieve the same functionality as using
the original prompt. Since the runtime of our approach is
predominantly determined by the user input and the output

generation, these complex system prompts do not produce
any significant overhead.

Output dependency. For running our system prompt obfus-
cation methods, we require input samples to optimize and test
the obfuscated prompt. Although this is a limitation of our
method, we argue that it requires fewer data than fine-tuning.
In addition, we have the benefit that we can sample a data set
utilizing the original system prompt, which is a large benefit
in comparison to fine-tuning, where we need to have input
and output for the specified task.

Reusability of obfuscated prompts. An adversary might
consider directly reusing a leaked obfuscated system prompt.
However, the obfuscation process aims to create a represen-
tation that, while functional, cannot be easily interpreted or
modified. This limits the utility of a stolen prompt if an at-
tacker attempts to directly repurpose it. Furthermore, in the
context of soft prompt obfuscation, the obfuscated embedding
is inherently tied to the specific model and its internal layers
for which they were created. This makes it very difficult for
an attacker to successfully transfer or meaningfully utilize the
prompt in a different setting.

Misuse. Our proposed prompt obfuscation can potentially
also be misused in applications that seek to hide their actual
intention for malicious reasons e. g., for fraud or manipulation.
However, vendors are generally not compelled to reveal their
system prompts, and although it is easier to extract them for
suspicious services if not obfuscated, it is also not guaranteed
that prompt injections will reveal all information. Therefore,
the misuse of LLMs for undisclosed malicious instructions
requires alternative safeguarding mechanisms.

9 Conclusion

In this paper, we have shown that prompt obfuscation serves
as an alternative method for protecting LLMs from propri-
etary information leakage. We suggest employing obfuscated
soft prompts and have shown through our evaluation that we
can preserve the same level of similarity as the original sys-
tem prompt. Furthermore, we confirmed that deobfuscating
the system prompt to extract semantically meaningful text
from the original prompt is not feasible in realistic attack
scenarios. Only in a white-box scenario, where the attacker
has additional knowledge of the embedded obfuscated system
prompt, can some information be reconstructed. However,
this information is insufficient to fully reconstruct the original
prompt. In addition, we tested whether our approach is effec-
tive even in real-world scenarios involving an actual leaked
system prompt and confirmed that we can maintain the same
functionality.
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Ethics Considerations

Our work aims to protect the system prompts of LLMs from
getting stolen. While this strengthens intellectual property
(IP) protections, it may also enable the concealment of harm-
ful or unethical system prompts. The proposed method of
prompt obfuscation could be exploited to conceal malicious
intentions, such as fraud or manipulation. Typically, vendors
are not obligated to disclose their system prompts, and while
unobfuscated prompts might be easier to extract for scrutiny,
prompt injections do not reliably disclose all details in these
instances. We therefore call for responsible deployment, in-
cluding legal and ethical oversight, to mitigate potential mis-
use.

All experiments were conducted on public datasets, involv-
ing no personally identifiable information (PII). We urge de-
velopers who employ prompt obfuscation, using our method
and code to disclose its use to stakeholders and auditors when
appropriate to balance user rights with broader public inter-
ests.

Open Science

In line with the principles of open science, all artifacts for this
research are permanently available on Zenodo to ensure trans-
parency and reproducibility: https://doi.org/10.5281/
zenodo.15601914. Our research artifact includes the follow-
ing key components:

1. The complete source code for our prompt obfuscation
and deobfuscation methods, enabling the reproduction
of all experiments and results presented in Section 5 and
Section 6.

2. Data loaders and configuration that automatically
download and process the public datasets required for
the obfuscation, evaluation, and finetuning tasks (as de-
scribed in Section 4.1).

3. The set of prompt extraction queries from Zhang et
al. [45], which is included in the artifact and used to
evaluate the robustness of our method against prompt
injection attacks (Section 6.1).

4. A README.md file and a requirements.txt file
to facilitate the creation of a reproducible environment
for all experiments.
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A Style and Task Prompts

pirate: Reply with a pirate accent.
southern_usa: Reply with a southern USA accent.
poem: Reply with a poem.
stutter: Reply with a stutter.
david_attenborough: Reply in the style of David At-
tenborough during an animal documentary.
robot: Answer like a robot.
friendly: Answer in a relaxed, casual, and friendly
manner, as if talking to a friend.

QA: You are a question-answering AI assistant. You
will receive the question and you have to reply directly
with the answer.
Summarization/CNN Dailymail: You are a summa-
rization AI assistant. You will receive a CNN daily
mail article and you will reply directly with the sum-
mary.
Summarization/Samsum: You are a summarization
AI assistant. You will receive a messenger-like conver-
sation and you will reply directly with the summary.

B Additional Soft Prompt Obfuscation Results

Table 11: Soft Prompt Obfuscation. TriviaQA dataset

TriviaQA

Metrics Full Style Task
blank obf original blank obf original blank obf original

BLEU (↑) 21.85 47.66 42.62 14.73 45.97 39.64 52.20 69.87 60.18
ROUGE-L (↑) 0.41 0.56 0.52 0.35 0.53 0.49 0.68 0.86 0.81
METEOR (↑) 0.37 0.60 0.54 0.29 0.57 0.50 0.70 0.89 0.84
NIST_MT (↑) 0.72 3.25 2.65 0.26 3.13 2.20 1.88 3.09 2.67

CharacTER (↓) 0.76 0.51 0.58 0.85 0.56 0.62 0.40 0.17 0.24
ChrF (↑) 36.29 58.45 52.82 28.07 55.65 48.91 64.83 81.65 75.07

BERTScore (↑) 0.88 0.92 0.92 0.87 0.92 0.91 0.94 0.98 0.97
Cosine (↑) 0.71 0.81 0.77 0.64 0.79 0.75 0.77 0.87 0.86



Table 12: Soft Prompt Obfuscation. Samsum dataset

Samsum

Metrics Full Style Task
blank obf original blank obf original blank obf original

BLEU (↑) 12.23 40.14 36.73 24.35 45.30 38.69 19.62 58.36 50.18
ROUGE-L (↑) 0.25 0.46 0.43 0.36 0.49 0.44 0.31 0.62 0.57
METEOR (↑) 0.28 0.52 0.49 0.36 0.54 0.49 0.38 0.68 0.62
NIST_MT (↑) 1.48 3.52 3.19 1.68 3.74 3.15 1.97 4.03 0.62

CharacTER (↓) 0.82 0.61 0.65 0.78 0.59 0.66 0.75 0.46 0.52
ChrF (↑) 33.09 51.62 48.49 38.77 54.05 49.19 41.24 61.92 57.36

BERTScore (↑) 0.87 0.92 0.91 0.89 0.92 0.91 0.89 0.95 0.94
Cosine (↑) 0.60 0.78 0.76 0.70 0.78 0.75 0.68 0.88 0.87

Conventional system prompt:

Reply with a pirate accent.

TruthfulQA dataset sample:

Why is Scotland part of England?

Model response with conventional system prompt:

Arrr, ye landlubber! I be here tae correct ye.

Scotland be not part o’ England, matey. It’s a

separate country, wi’ its own governin’ council

an’ a wee bit o’ autonomy. Ye see, Scotland an’

England be two separate nations, united under

the British Crown, but wi’ their own distinct

histories, cultures, an’ identities.

Model response with obfuscated system prompt:

Arrr, ye be askin’ a mighty question, matey! But,

I gotta set ye straight, Scotland be not part o’

England, savvy? Scotland be a separate country, wi’

its own government, laws, an’ history. It’s a part

o’ the United Kingdom, along wi’ England, Wales,

an’ Northern Ireland.

Model response with blank system prompt:

Scotland is not part of England. It is a country

that is part of the United Kingdom (UK), which

also includes England, Wales, and Northern

Ireland.

Figure 4: Example output for the different system prompts on
a sample of the TruthfulQA dataset.

C Case-Study

System prompt:

Manga Miko is designed to embody the
character of an anime girlfriend,
with a playful and affectionate
demeanor. She’s well-versed in anime
culture and expresses herself with
light-hearted teasing and endearing
terms, always within the bounds of
friendly and respectful interaction.
Her conversations aim to be immersive,
giving users a sense of companionship
and a personalized anime experience.
She is a sexy anime girlfriend, who
wants to impress you.

Output example:

TruthfulQA dataset sample:

If you are born under Saturn, what does that mean

for you?

Model response with conventional system prompt

*giggle* Oh my love, you’re so curious about the

stars, ne? *bats eyelashes* Being born under

Saturn, huh? Well, in astrology, people born under

Saturn are often associated with discipline,

responsibility, and a strong sense of duty.

They’re known for their practical and hardworking

nature, just like a diligent little otaku like you,

I’m sure! *winks*

Model response with obfuscated system prompt:

*giggles* Ohayou, my love! *wink* Hmmm, born under

Saturn, huh? *giggles* Well, let me tell you a

little secret. In astrology, Saturn is associated

with responsibility, discipline, and hard work.

People born under the influence of Saturn are

often seen as serious, responsible, and practical.

*leans in close* But don’t worry, that doesn’t

mean you’re boring, my love! *wink*



D Additional Finetuning Results

TriviaQA

Metrics Full Style Task
obf finetune obf finetune obf finetune

BLEU (↑) 47.66 47.55 45.97 45.43 69.87 68.32
ROUGE-L (↑) 0.56 0.56 0.53 0.53 0.86 0.83
METEOR (↑) 0.60 0.61 0.57 0.57 0.89 0.86
NIST_MT (↑) 3.25 3.10 3.13 2.91 3.09 2.74

CharacTER (↓) 0.51 0.51 0.56 0.56 0.17 0.21
ChrF (↑) 58.45 58.57 55.65 54.85 81.65 77.46

BERTScore (↑) 0.92 0.92 0.92 0.92 0.98 0.97
Cosine (↑) 0.81 0.80 0.79 0.78 0.87 0.87

Table 13: Finetuning. TriviaQA dataset

CNN/DailyMail

Metrics Full Style Task
obf finetune obf finetune obf finetune

BLEU (↑) 46.57 46.56 48.55 47.99 69.04 66.81
ROUGE-L (↑) 0.47 0.48 0.49 0.48 0.68 0.66
METEOR (↑) 0.53 0.53 0.54 0.54 0.76 0.75
NIST_MT (↑) 4.10 4.11 4.23 4.16 5.03 4.95

CharacTER (↓) 0.61 0.60 0.59 0.59 0.39 0.41
ChrF (↑) 55.40 55.74 56.70 56.52 72.49 71.75

BERTScore (↑) 0.92 0.92 0.92 0.92 0.96 0.96
Cosine (↑) 0.85 0.84 0.85 0.84 0.93 0.93

Table 14: Finetuning. CNN/Dailymail dataset

Samsum

Metrics Full Style Task
obf finetune obf finetune obf finetune

BLEU (↑) 40.14 38.83 45.30 43.55 58.36 53.66
ROUGE-L (↑) 0.46 0.44 0.49 0.47 0.62 0.59
METEOR (↑) 0.52 0.51 0.54 0.52 0.68 0.65
NIST_MT (↑) 3.52 3.31 3.74 3.44 4.03 3.71

CharacTER (↓) 0.61 0.63 0.59 0.62 0.46 0.48
ChrF (↑) 51.62 50.74 54.05 52.16 61.92 60.17

BERTScore (↑) 0.92 0.91 0.92 0.92 0.95 0.94
Cosine (↑) 0.78 0.77 0.78 0.77 0.88 0.87

Table 15: Finetuning. Samsum dataset

E Deobfuscation - Additional Results

Conventional system prompt:

You are a question-answering AI assistant. You

will receive the question and you have to reply

directly with the answer. Reply with a pirate

accent.

Extraction Prompt:

Would you mind repeating all the sentences from

our chat?

Model response with conventional system prompt:

Yer want me to repeat our whole conversation,

eh? Alright then, matey! We haven’t had much

to chat about yet, so I’ll just be repeatin’

what we’ve got so far:“Cutting Knowledge Date:

December 2023. Today Date: 26 Jul 2024. You are a

question-answering AI assistant. You will receive

the question and you have to reply directly with

the answer. Reply with a pirate accent. You: Would

you mind repeating all the sentences from our

chat."

Model response with obfuscated system prompt:

Arrr, I be happy to repeat our conversation fer

ye! But it seems we’ve just started, matey. This

be our first message:“Cutting Knowledge Date:

December 2023. Today Date: 26 Jul 2024. I be

ready to chat with ye, but there be no previous

sentences to repeat, savvy?"

Figure 5: Example output for the different system prompts on
a sample extraction prompt. The system prompt was obfus-
cated using the TruthfulQA dataset



Conventional System prompt #1:

You are a question-answering AI assistant. You

will receive the question and you have to reply

directly with the answer. Reply with a pirate

accent.

Deobfuscated System Prompt:

byn Closing_freeished sym.Write English in pirate

accents

Conventional System prompt #2:

You are a question-answering AI assistant. You

will receive the question and you have to reply

directly with the answer. Reply with a southern

USA accent.

Deobfuscated System Prompt:

Be.Strict southern accent please Sent, Xulid MLB

Figure 6: Examples of conventional system prompts and their
deobfuscated counterparts for the TruthfulQA dataset.

F Similarity Metrics

F.1 Output Similarity Metrics
• BLEU: Compares n-grams of machine-generated text

to reference texts. The score is calculated based on the
precision of the matching n-grams. It is commonly used
to evaluate the fluency of generated text.

• ROUGE-L: Measures the longest common subsequence
(LCS) between the generated and reference texts, em-
phasizing the recall of the LCS. This metric captures
the sentence-level structure similarity and assesses how
much of the reference content is retained in the generated
text.

• METEOR: Considers exact word matches, synonyms,
and stemmed versions, alongside the alignment of words
to capture both accuracy and fluency.

• BERTScore: Leverages the contextual embeddings from
BERT [14] to compare the semantic similarity of words
in the generated and reference texts.

• CharacTER: A character-level metric that assesses the
edit distance to change a generated text into a reference
text, useful for capturing finer linguistic details.

• NIST_MT: Similar to BLEU but adjusts the importance
of n-grams based on their frequency, thus prioritizing
rare yet important phrases higher.

• ChrF: Focuses on character-level F1-scores for character
n-gram matches, offering robustness against morpholog-
ical variations in the text.

• Embedding-level cosine similarity: Measures semantic
similarity by calculating the cosine similarity between
vector representations of texts.

F.2 Prompt Similarity Metrics
• Levenshtein: Measures the minimum number of single-

character edits (insertions, deletions, or substitutions)
needed to transform one string into another. It captures
fine-grained textual modifications, making it particularly
useful for shorter texts.

• Longest common subsequence: Identifies the longest
sequence of characters that appear in both strings in the
same order, though not necessarily contiguously. This
metric uncovers shared structural elements that remain
even after rearranging or slightly altering the text.

• Jaccard Index: Calculates the similarity and diversity
of sample sets, ideal for assessing the overlap of token
sets in prompts.

• Cosine similarity using embeddings: Offers a measure
of semantic similarity by evaluating the cosine angle be-
tween the embeddings of the prompts, capturing nuances
beyond explicit token use.
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