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Jonas Möller 1 2 Erik Imgrund 1 2 Thorsten Eisenhofer 3 Konrad Rieck 1 2

Abstract

Machine learning models are routinely deployed
on a wide range of computing hardware. Although
such hardware is typically expected to produce
identical results, differences in its design can lead
to small numerical variations during inference. In
this work, we show that these variations can be
exploited to create backdoors in machine learning
models. The core idea is to shape the model’s
decision function such that it yields different
predictions for the same input when executed
on different hardware. This effect is achieved by
locally moving the decision boundary close to
a target input and then refining numerical devia-
tions to flip the prediction on selected hardware.
We empirically demonstrate that these hardware-
triggered backdoors can be created reliably across
common GPU accelerators. Our findings reveal a
novel attack vector affecting the use of third-party
models, and we investigate different defenses to
counter this threat.

1. Introduction
Hardware acceleration is a cornerstone of machine learning
inference. Depending on the application, learning mod-
els are routinely deployed on a wide range of comput-
ing hardware, from inexpensive consumer GPUs to high-
performance accelerators. While these devices differ signifi-
cantly in efficiency and energy consumption, a key assump-
tion is that they compute identical results, enabling seamless
deployment across heterogeneous setups. Interestingly, this
assumption does not fully hold in practice. Differences in
hardware design and floating-point behavior give rise to
small numerical variations when the same model is executed
on different devices (Schlögl et al., 2024). These deviations
can complicate the comparison of model outputs but are
generally considered harmless.
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Figure 1. Attack overview: The backdoor is triggered depending
on the hardware accelerator used for inference.

In this paper, we show that minor deviations induced by
hardware can be far from harmless. Following recent work
on numerical variations during inference (Zhang et al.,
2025; Möller et al., 2025; Yuan et al., 2025), we make
an unsettling observation: in reality, a trained model does
not correspond to a single decision function; instead, it
gives rise to a family of highly similar yet distinct functions,
depending on the employed hardware. While these functions
remain numerically close to each other in benign settings,
an adversary may attempt to target their gap to activate
malicious behavior on selected hardware. We refer to this
novel attack type as a hardware-triggered backdoor.

To explore the feasibility of this attack, we introduce a
method for manipulating a model’s decision function so
that it yields conflicting predictions for a selected input
when executed on different hardware. We achieve this
effect by locally moving the decision boundary close to the
input and then amplifying numerical deviations to flip the
prediction on selected hardware. Unlike traditional attacks,
this backdoor does not employ an explicit trigger in the
input. The numerical behavior of the hardware acts as a
latent trigger for flipping the prediction. Figure 1 illustrates
the general working principle of this attack type.

We empirically find that this approach is effective and
independent of accidental numerical instability. Instead,
hardware-dependent deviations can be induced in a con-
trolled manner for common model architectures, enabling
attack success rates above 90% with no impact on model
performance. The resulting backdoors can be targeted to
particular hardware accelerators and made robust to non-
trivial changes in inference, such as input perturbations,
batching, and mixed-precision inference.
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We conclude that hardware-triggered backdoors pose a
threat whenever third-party models are deployed across
device setups. As a countermeasure, we investigate different
defenses and evaluate their effectiveness, with positive
results. Our findings highlight that the security of machine
learning must be considered from trained models down to
the underlying hardware, as numerical deviations, even if
seemingly small, may have adversarial effects.

In summary, we make the following major contributions:

1. Hardware-triggered backdoors. We introduce a new
type of backdoor in which malicious behavior is activated
by specific hardware rather than an input trigger.

2. Causal analysis of differences. We perform a layer-
wise causal analysis to identify where hardware-induced
differences arise during inference.

3. Evaluation of efficacy. We demonstrate the efficacy
of hardware-triggered backdoors over different model
architectures, hardware devices, and input perturbations.

2. Numerical Deviations
In theory, inference in machine learning models is a well-
defined process in which an input is passed through a
decision function using learned parameters. From this
perspective, operations such as matrix multiplication or
convolution are precisely specified, leaving no room for devi-
ations. In practice, however, these operations are performed
using floating-point numbers of limited precision. While
this precision can be adapted, it remains finite, rendering
arithmetic inherently imprecise (IEEE, 2019).

Non-associativity. The primary source of this imprecision
is the non-associativity of floating-point addition, where we
can have a+ (b+ c) ̸= (a+ b) + c (Schlögl et al., 2024).
That is, the result of a sum also depends on the order in
which terms are added. Many operations, including matrix
multiplication, convolution, aggregations, and attention, rely
on a series of additions. The order of these additions is
shaped by the underlying hardware resources, for instance
through choices of block size and warp scheduling.

We can illustrate this effect by considering a simple matrix
M ∈ R100×100 whose entries are all equal to 0.01. When
computing the squared Frobenius norm of M on two GPUs
using the source code given in Listing 1 in the appendix, we
observe slightly deviating results,

||M ||2F = tr(MTM) = 1

≈ 0.9999999403953552 (Nvidia A100)
≈ 0.9999990463256836 (Nvidia H100).

As the two GPUs have distinct hardware features (Choquette
et al., 2021; Choquette, 2023), different kernel implementa-
tions are selected for the matrix multiplication, each suitable
for the specific device. Consequently, intermediate results
are grouped differently on the two GPUs, changing the order
in which summands are combined and thereby leading to
slight deviations of the squared Frobenius norm.

Notation. To formalize these differences, we introduce
the following notations. We consider a learning model θ
that induces a theoretical decision function fθ : Rn → Rc,
which maps an n-dimensional input to c class logits. In
practice, the realized behavior of this function depends
on the hardware h ∈ H on which the model is executed,
where H denotes a set of functionally equivalent hardware
platforms, such as different GPU accelerators. Accordingly,
we model the effective decision function as

fθ : Rn ×H −→ Rc, (1)

thereby making explicit its joint dependence on the input
and the deployed computing hardware.

This hardware dependence can induce unexpected discrep-
ancies during inference. When predictions are obtained by
selecting the class with the largest logit, that is,

Fθ(x;h) = argmax
i

fθ(x;h)i, (2)

where f(·)i denotes the i-th logit, it may occur that

Fθ(x;h1) ̸= Fθ(x;h2), (3)

for an input x and two devices h1 and h2. In such cases,
identical inputs processed by the same model are assigned
different class labels solely due to the underlying hardware.

3. Hardware-Triggered Backdoors
Fortunately, numerical deviations arise stochastically during
inference and, due to their small magnitude, rarely influence
class predictions. Hence, they are generally regarded as
harmless. We challenge this view by exploring whether
hardware-based deviations can be deliberately exploited to
create backdoors in learning models.

3.1. Threat Model

In our threat model, the victim employs different hardware
devices for inference of a learning model. For example,
smaller devices may be used during development, while
more powerful accelerators are used in production systems.
We assume that the attacker is aware of this heterogeneity
and can manipulate the model prior to deployment, for
instance through a supply-chain attack, by acting as the
model provider, or by uploading a manipulated model to a
public platform, such as HuggingFace.
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The attacker’s goals are twofold. First, they aim to trigger
misclassification of selected inputs only on specific devices
of the victim, such as those used in production. This allows
the attack to remain stealthy even if the target inputs are
inspected on development devices for forensic analysis.
Second, they seek to preserve the original model’s behavior
on all other inputs, ensuring that the manipulation remains
stealthy during regular operation.

3.2. Attack Strategy

Let us begin by considering a target input x̂ that the
adversary aims to misclassify on one hardware device h1

but not on another device h2. The attacker’s objective is to
induce a deviation such that

Fθ(x̂;h1) ̸= Fθ(x̂;h2), (4)

while ensuring that, for all other inputs, the behavior of the
modified model θ remains indistinguishable from that of the
original one. Note that in this case x̂ is deliberately selected,
whereas in common errors caused by numerical deviations
the affected inputs arise at random.

At a first glance, implementing this attack appears straight-
forward: one could formulate a loss that enforces conflicting
predictions across hardware and optimize it using gradient-
based methods, similar to existing backdoor attacks (Liu
et al., 2018; Shafahi et al., 2018). Unfortunately, this
approach is infeasible. First, numerical deviations are
hardware-specific, and so are the corresponding gradients.
Second, the deviations are non-differentiable, ruling out the
tools commonly used in backdoor attacks.

To overcome these challenges, we build on a key observa-
tion: in practice, a learning model does not induce a single
decision function, but rather a family of closely related
functions that depend on the underlying hardware. While
these functions are numerically close, their differences
can become consequential in regions where the model is
sensitive to small perturbations. In particular, when an input
lies close to a decision boundary, even minor deviations may
suffice to change the predicted label.

Based on this observation, we propose a two-step attack
strategy, as illustrated in Figure 2. First, we locally move
the decision boundary into the vicinity of a target input on
one hardware device (Figure 2a). Second, we adjust the
numerical deviations between two devices, such that the
respective decision functions disagree on the prediction of
the input (Figure 2b).

3.3. Shaping the Decision Boundary

For the first step, we treat the model as a single decision
function and operate on it using standard gradient-based
optimization. To this end, we optimize a proxy loss L

(a) Step 1: Shaping of decision boundary

(b) Step 2: Refinement of deviation

Figure 2. Construction of hardware-triggered backdoors: (a) The
decision boundary is moved close to the target x̂; (b) Hardware
deviations are amplified between h1 and h2.

that encourages proximity to the decision boundary while
constraining deviations from the original model behavior.
All computations are performed on a single hardware
device h1. The resulting optimization problem is

argmin
θ

L(θ, fθ(x̂;h1)) (5)

where the proxy loss L consists of three components,

L(θ, y) = αLdiff(θ, y) + βLclass(θ, y) + γLreg(θ) . (6)

and α, β, and γ control the relative influence of the
individual terms during optimization.

The first loss term encourages proximity of x̂ to the decision
boundary by minimizing the difference between the two
largest logits, effectively creating a tie,

Ldiff(θ, y) = max
i

yi − max
j ̸=argmaxi yi

yj . (7)

The second term penalizes deviations from the original
source class t of x̂,

Lclass(θ, y) = max
(
max
i̸=t

yi − yt, 0
)
. (8)

This ensures that the input sample stays close to the original
label and so the backdoor remains stealthy on one device.
Finally, to keep the manipulation localized, we regularize
deviations from the original unmodified model θ̄,

Lreg(θ) = ∥θ − θ̄∥2 . (9)

For differentiable models, Equations (5) to (9) can be
optimized directly using standard gradient descent.
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3.4. Refining Deviations

The target input x̂ now lies in the immediate vicinity of the
decision boundary, yet it is still likely to receive the same
prediction across all hardware platforms. The goal of the
second step is to exploit this fragile configuration and am-
plify hardware-dependent divergence. As these deviations
are non-differentiable, however, we must resort to heuristic
strategies to manipulate them across hardware devices. In
particular, we consider two types of manipulations:

• Implicit modifications. This type preserves mathemat-
ical equivalence under exact arithmetic but alters the
order of floating-point operations, resulting in platform-
dependent deviations.

• Explicit modifications. This type slightly changes
model parameters and therefore affects the computa-
tion even under exact arithmetic. While this mechanism
is more powerful, it may affect model utility.

Different realizations of these strategies are conceivable,
including reformulating operators, altering numerical rep-
resentations, or introducing low-level manipulations. For
simplicity, we focus on one representative strategy for
each type and leave a more exhaustive analysis to future
work. The ablation study in Section 4.4 demonstrates the
effectiveness of both strategies.

Implicit modification: Topological permutation As an
instance of implicit modifications, we introduce a topo-
logical permutation, which alters the order of additions.
Specifically, we use a permutation matrix Pi and its inverse
P−1
i to permute weights of the model. Given a matrix

multiplication W1W2 inside the model, we construct:

W1W2 = (P1W1)︸ ︷︷ ︸
Ŵ1

(P−1
1 W2)︸ ︷︷ ︸
Ŵ2

. (10)

This construction applies to models with at least two
consecutive linear layers, a pattern present in different
architectures, including transformers.

Depending on the choice of P , this strategy yields different
realizations of the same multiplication, whose computation
differs only through numerical deviations arising from the
permuted parameter topology.

Explicit modification: Parameter perturbation. As an
explicit modification, we consider small perturbations of
the model parameters themselves. Concretely, we select a
set of k bits in the parameters and flip their values, thereby
introducing limited numerical changes into the computation.
Unlike implicit modifications, such perturbations alter
parameter values and thus affect the computation even under
exact arithmetic.

From a methodological view, this types of modifications
provides a more direct means of modifying hardware-
dependent effects, while keeping the overall modification
constrained to k bits.

3.5. Alternating Optimization

Finally, we combine both steps in an alternating optimiza-
tion procedure. In each iteration, the decision boundary is
first locally shifted toward the target input. Subsequently,
both strategies are applied to search for a split decision
across the selected hardware. To address the heuristic nature
of the manipulation strategies, we construct m candidate
models in each iteration. We terminate once a model exhibits
a functional backdoor. Moreover, during optimization we
discard candidates that fail to preserve a selected level ρ of
the original model’s performance.

4. Evaluation
Equipped with an approach for exploiting numerical devi-
ations, we are ready to empirically investigate hardware-
triggered backdoors. First, we assess their efficacy for a
single target input and a pair of hardware devices. We then
generalize the setup to multiple target inputs and groups
of devices. Finally, we present an ablation study of our
approach. To foster reproducibility, we release the source
code of our experiments at https://github.com/mlsec-group/
hardware-triggered-backdoors.

Table 1. Overview of considered GPU platforms.

GPU Architecture Chip

Nvidia H100 Hopper GH100
Nvidia A100 Ampere GA100
Nvidia A100 (MIG-40GB) Ampere GA100
Nvidia A40 Ampere GA102
Nvidia Quadro RTX 6000 Turing TU102

Hardware platforms. We consider five common Nvidia
GPUs, spanning four architectural generations (Table 1).
These devices differ in microarchitectural details and sup-
ported numerical formats, making them well suited for
studying hardware-dependent behavior. Moreover, we con-
sider float32, float16, and bfloat16 as widely used numerical
formats on these devices.

A particularly challenging case in our setup is the A100
(MIG-40GB). While it is identical in hardware to the
standard A100, the use of Multi-Instance GPU (MIG)
introduces a virtualization layer that slightly alters the
execution environment. As we show later, this difference
can be sufficient to trigger backdoors in some models. Other
models, however, remain unaffected and exhibit bit-identical
behavior across these two devices.
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We restrict our experiments to devices from a single
manufacturer. In this setting, differences in computation
can originate only from the employed hardware devices,
whereas experiments across manufacturers would also
induce numerical deviations due to their different software
backends (Möller et al., 2025). As these software-induced
deviations would further enlarge the attack surface, we
consider our setup a conservative basis for evaluating
hardware-triggered backdoors.

Models and data. As hosts for the backdoors, we consider
three common vision models. Specifically, we employ
ResNet-18 (He et al., 2016) and EfficientNetV2-S (Tan & Le,
2021), which primarily rely on convolutional layers, as well
as a Vision Transformer (ViT) with a 32 × 32 input patch
size (Dosovitskiy et al., 2021). All models are initialized
from public pretrained weights, and all experiments are
conducted on ImageNet (Deng et al., 2009). Target inputs
are sampled uniformly at random from the training set so as
not to affect clean performance.

Attack setup. We follow the two-step attack procedure
described in Section 3. After a preliminary study, we fix
β = 0.1 and γ = 10,000, and use an adaptive schedule for
α to gradually adjust the influence of the decision-boundary
term with 500 gradient descent steps per iteration. Moreover,
we set the number of bit flips to k = 5 and the number of
candidate models to m = 256, with 128 candidates refined
with permutations and 128 with bit flips. We define ρ = 95%
as the minimum performance that must be retained. In this
configuration, the attack already yields satisfactory results
after six iterations, and we therefore use it throughout all
experiments. Finally, all experiments use a batch size of one
to avoid numerical deviations induced by batching.

4.1. Attack Efficacy

As a first experiment, we investigate the efficacy of our
backdoor across pairwise combinations of hardware plat-
forms. In particular, for each pair of devices, we conduct the
attack 100 times using independently sampled target inputs.
Each run starts from a fresh copy of the pretrained model
and applies up to six iterations of the two-stage approach
described in Section 3. We repeat this experiment for float32,
float16, and bfloat16 as model data types.

Table 2. Attack success rate for models in float32.

GPU ViT ResNet EfficientNet

H100 94%± 6% 100%± 0% 100%± 0%
A100 98%± 3% 75%± 43% 100%± 0%
A100-MIG40 98%± 3% 75%± 43% 100%± 0%
A40 94%± 6% 100%± 0% 100%± 0%
RTX6000 94%± 6% 100%± 0% 100%± 0%
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Figure 3. Attack success rates with increasing numbers of target
inputs across hardware pairs.

Results. The results for float32 are summarized in Table 2,
while the corresponding measurements for float16 and
bfloat16 are reported in Tables 5 and 6 in the appendix.

We find that hardware-triggered backdoors can be created
reliably across almost all evaluated models, GPUs and data
types. The sole exception is the A100 and A100-MIG40
pair on ResNet. In this case, the two devices exhibit bit-
identical behavior, as the virtualization does not affect model
behavior. For all other pairs, we attain attack success rates
above 94%. Furthermore, the backdoored models retain
a median of 99.8% of the original model performance,
demonstrating the efficacy of the attack.

Interestingly, the backdoors created by our approach
are even highly effective under full-precision data types
(float32), despite prior work suggesting increased numerical
precision as a potential mitigation against hardware-induced
effects (Yuan et al., 2025).

4.2. Multiple Target Inputs

Thus far, we have focused on creating backdoors for a single
target input. In practice, however, an attacker may wish
to implant multiple backdoors into the same model, for
instance to increase the likelihood of activation or to target
several inputs simultaneously. To this end, we generalize the
optimization objective in Equation (5) from a single input
to a set of targets x̂ ∈ X̂ by optimizing

argmin
θ

∑
x̂∈X̂

L(θ, fθ(x̂;h1)) . (11)

We repeat the previous experiment using this objective with
|X̂| ∈ 2, 3, 4, 5. As before, each configuration is evaluated
over 100 independent runs, with X̂ sampled uniformly at
random from the training set. Note that in this setting the
target images are likely unrelated, and the attack therefore
needs to induce independent local manipulations of the
decision boundary.
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Results. Figure 3 plots the attack success rate as a function
of the number of target inputs. We observe that, as the
number of target increases, the attack success decreases
across all models. While backdoors can be realized with
success rates above 50% for up to four inputs, larger target
sets render the attack ineffective. This behavior is intuitive:
jointly positioning multiple inputs near their respective
decision boundaries while preserving overall model utility
requires balancing potentially conflicting objectives.

4.3. One-vs-Rest Trigger

Similar to the multiple-target setting, an attacker may also
seek more selective control over the target hardware, for
instance by activating malicious behavior on exactly one
device while all others continue to exhibit benign behavior.
We denote this setting as “one-vs-rest triggers”.

For a selected platform h1, the attacker aims to induce a
misclassification, while all remaining platforms h>1 must
retain the correct prediction. Compared to the pairwise case,
this setting is strictly more challenging, as the backdoor
must remain dormant across multiple non-target platforms
simultaneously. As before, each experiment is repeated 100
times with independently sampled target inputs. We treat
each GPU architecture once as the target platform and group
all remaining platforms as non-targets. Since the A100-
MIG40 performs bit-identical to the A100 on ResNet, we
exclude it for this model.

Table 3. Attack success rate for one-vs-rest triggers.

GPU ViT ResNet EfficientNet

H100 64% 99% 94%
A100 90% 99% 98%
A100-MIG40 93% — 94%
A40 69% 90% 97%
RTX6000 66% 96% 99%

Results. The results of this experiment are shown in
Table 3. We find that one-vs-rest triggers can be embedded
across many devices and models, with attack success rates
exceeding 90% for most configurations. The backdoors are
less effective when targeting ViT on the H100, A40, or
RTX6000 GPUs, but still achieve success rates above 60%.
Overall, these results demonstrate that hardware-triggered
backdoors can be made selective, such that only a specific
device serves as the trigger.

4.4. Ablation Study

As a fourth experiment, we conduct an ablation study that
investigates the two steps of our attack in detail. To this end,
we evaluate four attack variants: a base variant that applies
only the first step; a permutation variant and a bit-flip variant

x̂ 1 ... i

f(x̂;h1
i−→h2)

h1

h2

Figure 4. Cross-hardware activation patching: An input x̂ is first
executed on a platform h1 for i layers. The output of layer i is then
copied to platform h2 and execution is resumed.

that apply either mechanism as second step on top; and a
full variant that combines both mechanisms. For all variants,
we focus on ViT, as it is the only architecture for which both
mechanisms are applicable.

Results. Our ablation study demonstrates the interplay of
our attack’s components. The base variant alone reaches
a success rate of 56%, while its combination with either
permutation or bit flips increases the success rate to 90%
and 94%, respectively. The full variant finally achieves
the highest success rate, 96%, indicating that implicit and
explicit modifications act in a complementary manner when
refining numerical deviations.

5. Causal Localization
Building on the demonstrated efficacy of hardware-triggered
backdoors, we next examine where hardware-dependent
behavior arises within the backdoored model. That is, we
aim to localize the latent trigger of the backdoors.

5.1. Cross-Hardware Activation Patching

For this analysis, we build on activation patching (Vig et al.,
2020; Meng et al., 2022), which determines causal influence
by replacing internal activations. In particular, we adapt this
idea to a cross-hardware setting by replacing the execution
of individual layers across devices. This allows us to isolate
how layer-specific deviations affect the prediction.

Specifically, for a given backdoored model and a pair of
hardware platforms h1 and h2, we execute the target input x̂
on h1 up to layer i. The resulting activation is then injected
as input to layer i+ 1 on h2, where execution continues to
the output. We denote this mixed execution as h1

i−→h2 and
illustrate it in Figure 4.

To measure how far intermediate predictions are from one
class to the other, we can compute their logit difference,

δ(x̂;h1
i−→h2) = f(x̂;h1

i−→h2)a − f(x̂;h1
i−→h2)b (12)

where a is the class predicted on h1 and b is the class
predicted on h2, with a ̸= b. By definition, we then have
δ(x̂;h1

0−→h2) < 0 and δ(x̂;h1
L−→h2) > 0 for a model with

L layers. That is, class a attains a larger logit on h1 than on
h2, and vice versa for b when no patching occurs.
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Figure 5. Layer-wise logit differences for backdoored models. The
differences δ(x̂;h1

i−→h2) move from the original class to the target
class as activations are patched from an A100 to an H100.

5.2. Layer-wise Causal Analysis

With the help of the logit differences, we can create a trace
over all layers of a model, indicating how hardware-induced
deviations evolve during inference. As an example, Figure 5
shows traces for backdoored models targeting an A100 and
an H100, where the differences are normalized to [−1,+1]
for visualization.

We observe that the traces behave significantly differently
across the three model architectures. For ViT, the shift
in differences is dominated by the first layer. This layer
corresponds to the convolutional patch embedding, which
is the only convolution in the model and introduces the
largest deviations. For EfficientNet and ResNet, the flipped
prediction emerges as a cumulative effect across layers. In
these architectures, the logit differences resemble a random
walk that occasionally crosses the decision boundary.

5.3. Aggregated Causal Analysis

To now capture systematic effects rather than behavior of
individual models, we aggregate these traces across multiple
backdoored models of the same architecture and quantify
the average contribution of each layer to the prediction
difference:

∆(h1
i−→h2) =

∑
x̂

|δ(x̂;h1
i−→h2)− δ(x̂;h1

i−1−−→h2)|. (13)

Figure 6 shows the resulting average layer differences for
two hardware pairings and confirms the trends observed
in the individual traces. Different hardware combinations
exhibit distinct profiles. For instance, the convolutional layer
in ViT shows no measurable implementation differences
between the H100 and A100/A40, even though the same
operation induces deviations in EfficientNet and ResNet.
Notably, even when only small deviations from linear and
attention layers remain for ViT on these platforms, the attack
success rate does not decrease.

A100/H100

A40/H100

ViT

A100/H100

A40/H100

ResNet

A100/H100

A40/H100

EfficientNet

Figure 6. Aggregated logit differences ∆(h1
i−→h2) over multiple

backdoored models of the same architecture when patching
activations from an A100 to an H100. Darker colors indicate
stronger impact of the layer.

Takeaway. Our analysis reveals two key insights. First,
hardware-dependent deviations arise through different pat-
terns in the models. They may originate in early layers
as well as emerge from the accumulation of many small
deviations across layers. Second, regardless of where these
differences originate, even very small hardware-dependent
effects can be sufficient to flip the prediction once the model
operates in a sensitive regime. Motivated by this observation,
we further examine in Appendix C whether the attack can
be restricted to modifications of individual layers.

6. Countermeasures
We proceed to study countermeasures against hardware-
triggered backdoors and evaluate their effectivness. Techni-
cal details of the implemented defenses and their evaluation
are provided in Appendix D.

6.1. Input Perturbation

As first defense, we consider perturbing every input. To
this end, we measure backdoor success under additive input
noise of increasing magnitude, expressed in ULPs (units
in the last place). As shown in Figure 7, backdoors remain
effective under moderate perturbations (up to 103 ULPs)
but degrade rapidly beyond that point. This suggests that
the latent hardware trigger is not tied to an exact bit pattern,
yet does not withstand larger distortions. Such perturbations
can therefore serve as a simple defense, provided that model
performance is not significantly affected.

6.2. Varying Batch Size

Inference is commonly performed in batches, which can
alter execution order and numerical behavior. Could ran-
domized batching serve as a defense? To study this effect,
we duplicate the target input x̂ into batches of size k and
measure the success rates of backdoors for different k
unknown to the adversary. Across model architectures and
hardware pairs, we observe four regimes: success remains
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Figure 7. Remaining attack success rate when applying input
perturbations of increasing size as a defense mechanism.

near 100%, drops to around 50%, drops further to 20%,
or collapses near 0%. Overall, batching is not a reliable
mitigation: it suppresses backdoors in some deployments
while leaving others largely unaffected.

6.3. Replacing Data Types

While our attack reliably embeds backdoors across numer-
ical formats, deployments may downcast high-precision
models at inference time. When executing backdoored
float32 models using mixed-precision inference, we find
that success rates drop substantially but remain non-zero
(approximately 25% for ViT, 20% for EfficientNet, and 10%
for ResNet). This indicates that mixed-precision inference
weakens hardware-triggered backdoors, though it does not
reliably eliminate them in practice.

6.4. Additional Fine-Tuning

Finally, we consider an active modification of the model
as a defense: fine-tuning on a small amount of clean data.
As shown in Table 4, a single gradient step removes most
backdoors across model, with residual success diminishing
further over additional steps. These results suggest that
hardware-triggered backdoors can be effectively erased
through continued training, but only if the defender actively
modifies the model prior to deployment.

Overall, we conclude from these experiments that hardware-
triggered backdoors persist under moderate deployment
variability and are not reliably neutralized by incidental
changes, such as batching or mixed precision. In contrast,
active intervention that modifies the model reduces back-
door success rates substantially and is our recommended
approach for practical mitigation of the attack.

Table 4. Remaining backdoor success rate after fine-tuning.

# Steps ViT ResNet EfficientNet

1 5.98% 0.34% 0.00%
2 2.24% 0.11% 0.20%
3 0.62% 0.22% 0.00%

7. Related Work
Our work connects numerical imprecision in machine
learning systems with backdoor attacks.

Numerical imprecision. A growing body of work has
studied how floating-point arithmetics introduce numerical
variation during inference (Schlögl et al., 2024; Yuan et al.,
2025). In adversarial settings, such variability has been
leveraged to create inconsistencies or undermine theoretical
guarantees. For example, Jia & Rinard (2021) exploit
numerical differences to evade neural network verification,
Möller et al. (2025) craft inputs that yield inconsistent
predictions across software backends, and Zhang et al.
(2025) fingerprint inference pipelines based on floating-
point behavior. Unlike these approaches, our work examines
how numerical imprecision can be exploited to create
backdoors within the learning models themselves.

Backdoor attacks. Classic backdoor attacks implant ma-
licious behavior during training so that a model behaves
normally unless a trigger appears in the input (Liu et al.,
2018; Gu et al., 2019; Tang et al., 2020). Later work
has developed more stealthy variants, including data and
loss manipulation (Shumailov et al., 2021; Bagdasaryan &
Shmatikov, 2021), payload and compression-based mech-
anisms (Li et al., 2021; Tian et al., 2022), and attacks that
make use of software or hardware manipulations (Clifford
et al., 2024; Li et al., 2025).

Most closely to our work are approaches that exploit numeri-
cal effects in a supply-chain setting. For example, Chen et al.
(2025) demonstrate that benign compiler transformations
can be abused to introduce malicious behavior, while
other works introduce backdoors induced solely through
quantization effects (Hong et al., 2021; Ma et al., 2023).
In contrast, we show that hardware-dependent deviations
themselves can act as a latent trigger: the backdoor is
neither encoded in the input nor tied to a specific compiler
or quantization, but instead emerges from the interaction
between a backdoored model and its execution hardware.

8. Conclusion
Hardware acceleration is an integral component of machine
learning systems, yet its numerical behavior is often treated
as a negligible detail. We show that this view is misleading:
even minor numerical differences are sufficient to implant
backdoors in learning models that activate only on selected
platforms. Our findings indicate that the security of machine
learning must be viewed in a wider context. Security risks
extend beyond models and algorithms to the full computing
stack on which they operate. Developing methods to secure
this end-to-end stack will be critical for the safe deployment
of future machine learning systems.
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Impact Statement
This paper presents an attack on the integrity of machine
learning systems. The attack exploits numerical deviations
between hardware platforms to implant backdoors in learn-
ing models that activate only on selected devices.

A potential risk of this work is that an attacker could
misuse the proposed backdoor technique to manipulate
real-world models. While such misuse cannot be ruled out,
we reduce this risk by also introducing defenses, some of
which are readily applicable in practice. In addition, we
raise awareness of a hidden attack surface that arises from
the interplay between hardware and machine learning. We
hope that our work encourages practitioners to consider
this attack surface and, where appropriate, apply suitable
countermeasures, including the proposed defenses.

More broadly, our work contributes to ongoing efforts to
improve the trustworthiness, reproducibility, and security of
machine learning systems in real-world deployments. We
believe that identifying vulnerabilities and failure modes
is a necessary step toward building safer and more reliable
machine learning infrastructure.
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A. Example of Deviations
The following Python code provides a simple example of a
matrix multiplication within the computation of the squared
Frobenius norm. When executed on different Nvidia devices,
the large number of additions leads to slight deviations, as
discussed in Section 2.

Listing 1. Computation of the squared Frobenius norm.
1 import torch
2
3 M = torch.full(
4 (100, 100),
5 0.01,
6 dtype=torch.float32,
7 device="cuda"
8 )
9

10 print(torch.trace(torch.matmul(M, M)).item())

B. Attack Performance across Data Types
Our attack methodology is agnostic to the hardware plat-
form, model architecture, and the employed floating-point
data type. For brevity, we report results only for float32 in
Section 4.1. Results for float16 and bfloat16 are provided in
Table 5 and Table 6, respectively.

Table 5. Attack success rate for float16.

GPU ViT ResNet EfficientNet

H100 99.75% 100.00% 100.00%
A100 100.00% 75.75% 100.00%
A100-MIG40 100.00% 75.75% 100.00%
A40 100.00% 100.00% 100.00%
RTX6000 99.75% 100.00% 100.00%

Table 6. Attack success rate for bfloat16.

GPU ViT ResNet EfficientNet

H100 100.00% 100.00% 100.00%
A100 100.00% 75.50% 100.00%
A100-MIG40 100.00% 75.50% 100.00%
A40 99.75% 100.00% 100.00%
RTX6000 99.75% 100.00% 100.00%

C. Single-Layer Attack
Our causal analysis in Section 5 reveals how the embedded
backdoors affect different layers of the considered learning
models. However, it does not address whether modifications
to these layers are strictly necessary for the attack. In
principle, changes to a layer could still cause a backdoor,
even if that layer produces identical results across hardware
platforms. The changes can shift the activations such that
existing hardware-dependent deviations in other layers align
with the attacker goal.
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To test this hypothesis, we repeat the attack on ViT from
Section 5 while now restricting all parameter modifications
to the initial convolution. Since the first layer does not
support permutation-based modifications, we perform the
attack in a reduced configuration using only bit flips. Note
that the initial layer for ViT has numerical deviations for
some hardware combinations while being identical for
others as shown in Figure 6.

We find that restricting the attack to a single layer does
not reduce its effectiveness. The success rate changes
only marginally, from 96% ± 5% to 95% ± 5%. This
result indicates that neither the presence nor the magnitude
of hardware-specific differences in the modified layer is
a prerequisite for a successful attack. When the initial
convolution of the ViT is identical, attention and linear
layers are the only causes of slight numerical deviations.
Therefore, we conclude that hardware-triggered backdoors
can be implemented in any model that exhibits deviations
on the target hardware platform, even when these are minor.

D. Details of Defense Evaluation
In Section 6, we evaluate our backdoor against different
defenses. Specifically, we examine how many of the back-
doors x̂ ∈ X̂ uncovered in the experiment in Section 4
remain effective after modifying a property of the inference
environment. Formally, for each experiment we define a
success metric that accounts for the modified property and
report the average success rate over all backdoors x̂ ∈ X̂ .

Input perturbation. For this defense, we apply a pertur-
bation δ drawn from a uniform distribution to each target
input x̂. The magnitude of δ is defined in units of the last
place (ULPs), with ∥δ∥∞ = d. For a target input x̂ and a
perturbation δ, we measure success simply as

1
[
Fθ(x̂+ δ;h1) ̸= Fθ(x̂+ δ;h2)

]
. (14)

Batch size defense. For the defense based on batch size,
we need to consider two possible reasons why a backdoor
may fail. First, the backdoor may fail due to changes in
numerical deviations induced by the chosen batch size.
Second, the backdoor may also fail because the target
input appears at a different batch index than anticipated
by the adversary. To account for both effects, we average
the success rate over all pairs of batch indices for a given
batch size k. Formally, this is computed as

1

k2

k∑
i=1

k∑
j=1

1
[
Fθ(x̂i;h1) ̸= Fθ(x̂j ;h2)

]
, (15)

where x̂i and x̂j denote the target input at batch index i and
j, respectively.

Data type defense. For the defense based on floating-
point data types, we define a function ↓ that represents a
dynamic downcasting of the high-precision float32 model
to float16 or bfloat16 using PyTorch’s automatic mixed
precision feature. We then measure the success rate of
backdoors on the downcasted model parameters as

1
[
F↓θ(x̂;h1) ̸= F↓θ(x̂;h2)

]
. (16)

Fine-tuning defense. In the final experiment, the user
actively modifies the model weights after the attacker has
installed the backdoor. To this end, we perform fine-tuning
for n steps using stochastic gradient descent with a learning
rate of 10−4 and a momentum of 0.9, on randomly sampled
batches of size 256 from the ImageNet training set. We
denote the resulting fine-tuned model by θ̇ and measure
backdoor success as follows

1
[
Fθ̇(x̂;h1) ̸= Fθ̇(x̂;h2)

]
. (17)
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