
Verifiable and Provably Secure Machine Unlearning
Thorsten Eisenhofer∗, Doreen Riepel†, Varun Chandrasekaran‡,

Esha Ghosh§, Olga Ohrimenko¶, Nicolas Papernot∥

BIFOLD & TU Berlin∗, CISPA Helmholtz Center for Information Security†,
University of Illinois Urbana-Champaign‡, Microsoft Research§,

The University of Melbourne¶, University of Toronto & Vector Institute∥

Abstract—Machine unlearning aims to remove points from
the training dataset of a machine learning model after training:
e.g., when a user requests their data to be deleted. While many
unlearning methods have been proposed, none of them enable
users to audit the procedure. Furthermore, recent work shows a
user is unable to verify whether their data was unlearnt from an
inspection of the model parameter alone. Rather than reasoning
about parameters, we propose to view verifiable unlearning as
a security problem. To this end, we present the first crypto-
graphic definition of verifiable unlearning to formally capture
the guarantees of an unlearning system. In this framework, the
server first computes a proof that the model was trained on a
dataset D. Given a user’s data point d requested to be deleted,
the server updates the model using an unlearning algorithm.
It then provides a proof of the correct execution of unlearning
and that d /∈ D′, where D′ is the new training dataset (i.e., d
has been removed). Our framework is generally applicable to
different unlearning techniques that we abstract as admissible
functions. We instantiate a protocol in the framework, based
on cryptographic assumptions, using SNARKs and hash chains.
Finally, we implement the protocol for three different unlearning
techniques and validate its feasibility for linear regression, logistic
regression, and neural networks.

I. INTRODUCTION

The right to be forgotten entitles individuals to self-
determine the possession of their private data and compel
its deletion. In practice, this is now mandated by regulations
like the GDPR [1], CCPA [2], or PIPEDA [3]. Consider the
case where a company or service provider collects data from
its users. These regulations allow users to request a deletion
of their data and legally compels the company to fulfil the
request. However, this is challenging when the data is used
for downstream analyses, e.g., training machine learning (ML)
models, where the relationship between model parameters and
the data used to obtain them is complex [41]. In particular, ML
models are known to memorize information from their training
set [18], [13], resulting in attacks on the privacy of training
data [15], [43].

Thus, techniques have been introduced for unlearning: a
trained model is updated to remove the influence a training
point had on the model’s parameters and predictions [14].
Regardless of the particular approach, existing techniques [67],
[12], [34], [27], [30], [8], [54] suffer from one critical limi-
tation: they are unable to provide the user with a proof that

their data was indeed unlearnt. This is problematic because
dishonest service providers may falsify unlearning to avoid
paying the large computational costs or to maintain model
utility [55], [26].

Additionally, verifying that a point is unlearnt is non-trivial
from the user’s perspective. A primary reason is that users (or
third-party auditors) cannot determine whether a data point
is unlearnt (or not) by comparing the model’s predictions or
parameters before and after the claimed unlearning. The com-
plex relationship between training data, models’ parameters,
and their predictions make it difficult to isolate the effects of
any training point. In fact, prior work [58], [61] demonstrates
that a model’s parameters can be identical when trained with or
without a data point. To address these concerns, we propose
a cryptographic approach to verify unlearning. Rather than
trying to verify unlearning by examining changes in the model,
we ask the service provider (i.e., the server) to present a
cryptographic proof that an agreed-upon unlearning process
was executed. This leads us to view unlearning as a security
problem that we aim to solve with formal guarantees.

In this paper, we propose the first formal framework of
verifiable machine unlearning. The framework describes the
interface of an unlearning protocol in an algorithmic man-
ner and also defines a game-based security notion which
allows to prove security of protocol instantiations based on
cryptographic assumptions. In order to capture the desired
security goals, we find that the definition needs to ensure
consistency of data during training and unlearning, and across
model updates and evolving datasets as it requires a user to
be able to verify that their data was not re-added at later
stages. Therefore, we formalize unlearning in our framework
as an iteration-based protocol; this requires the server to prove
that it has honestly updated the model and dataset in each
iteration, either due to training with new data or unlearning
previously used data. Only then does the user have sufficient
guarantees about deletion of their data. Under this definition,
we can instantiate protocols using any unlearning technique
and any cryptographic primitives that have appropriate security
guarantees. We capture the relationship between models and
datasets via initialization, training, and unlearning functions
with an abstraction that we call admissible functions.

In our framework, we identify the following guarantees that
need to be satisfied: (a) the model was trained conceptually
from some dataset (more details in § IV), and (b) the user’s

data point is not present in this dataset. Thus, the framework
has two major components. First, the server computes a proof
of training whenever data points are added to the model’s
training data: this establishes that it trained the model on a
particular dataset. Second, when a user submits a request to
unlearn a specific data point, the server computes a proof
of unlearning that proves that the model and its conceptual
training set was updated addressing the request. Additionally,
the server provides the user with a proof that their data point is
not part of the updated training set. By linking the executions
of those components across iterations, these proofs also ensure
that no data point can be added back to the training set after
it was unlearnt.

We present a fully instantiated protocol in our framework.
This instantiation uses SNARK-based verifiable computation
as a generic approach for the proof of model updates induced
by training or unlearning, and hash chains for the proof of
non-membership in a model’s training set. Under our security
definition, we formally prove the correctness and security of
this instantiation generically for any training and unlearning
algorithms covered by the abstraction of admissible functions.

Finally, we provide the first implementation of verifiable
unlearning based on cryptographic primitives. In particular,
we instantiate the SNARK with the Spartan [56] proof sys-
tem for verifiable training and unlearning. We consider three
unlearning techniques: retraining-based unlearning, amnesiac
unlearning [30] and optimization-based unlearning [37], [64].
We demonstrate the versatility and scalability of our con-
struction on a variety of binary classification tasks from the
PMLB benchmark suite [52], using linear regression, logistic
regression, and simple neural networks.

Contributions. We make the following contributions:

• Formal framework. We introduce a framework to con-
struct protocols for verifiable machine unlearning. Our
framework is designed to be general enough to capture
different unlearning algorithms and secure primitives.
It models verifiable unlearning as a 2-party protocol
(executed between a service provider and its users).

• Security definition of verifiable machine unlearning. We
then propose a formal security definition of a verifiable
machine unlearning scheme. This game-based definition
allows to prove the security of unlearning protocols
within our framework.

• Instantiation. We present a fully instantiated protocol.
This construction is based on a generic interface of
admissible functions for training and unlearning and thus
applicable to any training and unlearning algorithm (as
captured by the abstraction).

• Practical implementation. Finally, we provide the first
implementation of verifiable unlearning based on cryp-
tographic primitives. We study its applicability to three
unlearning techniques, different classes of ML models,
and benchmark datasets.

II. BACKGROUND

In this section, we discuss the preliminaries needed to
understand the contributions of our work.

Notation. Throughout the paper, let λ denote the security
parameter. We call a function negligible in λ—denoted by
negl(λ)—if it is smaller than the inverse of any polynomial
for all large enough values of λ. [m : n] denotes the set
{m,m+ 1, ..., n} for integers m < n. For m = 1, we simply
write [n]. y ← M(x1, x2, . . .) denotes that on input x1, x2, . . .,
the probabilistic algorithm M returns y. An adversary A
is a probabilistic algorithm, and is efficient or Probabilistic
Polynomial-Time (PPT) if its run-time is bounded by some
polynomial in the length of its input. We will use code-based
games, where Pr[G⇒ 1] denotes the probability that the final
output of game G is 1.

A. Machine Learning Preliminaries
We start with the required background on machine learning

and introduce several techniques for unlearning.

Supervised Machine Learning. Supervised machine learning
(ML) is the process of learning a parameterized function fθ
(often called a model) that is able to predict an output (from the
space of outputs Y) given an input (from the space of inputs
X), i.e., fθ : X → Y . Commonly learnt functions include
linear regression, logistic regression, and neural networks.

The parameters of this function are typically optimized
using methods such as stochastic gradient descent (SGD).
Let θinitial be randomly initialized parameters and D =
{d1, . . . , dn} a set of training data points, where each d =
(dx, dy) ∈ X × Y . During training we iteratively update
parameters as θ′ := θ − η∇θL(fθ(dx), dy) for points d ∈ D
where L is a suitably chosen loss function (e.g., cross-entropy
loss) and η the learning rate.

In SGD, the update is calculated for a randomly chosen
input d ∈ D in each step. In practice, this is often extended
to batches of data points in order to reduce the variance
of each update. Often, multiple passes (called epochs) are
repeated through the dataset. We can describe the full process
of training a model m (interchangeably used with θm) by

θm := θinitial +
∑
e∈[E]

∑
d∈D

∆e,d ,

with E being the number of epochs and ∆e,d the update on
the model’s parameter from data point d in epoch e.

Machine Unlearning. In machine unlearning the goal is to
design algorithms that enable an ML model (specifically, its
parameters) to forget the contribution of a (subset of) data
point(s). The canonical approach for this is to naively retrain
the model from scratch. Hence, removing a data point d∗ from
a model m with retraining-based unlearning can be described
as

θm′ := θinitial +
∑
e∈[E]

∑
d∈D\{d∗}

∆e,d .

As the resulting model θm′ is completely devoid of data
point d∗ (by construction), this is an example for exact

unlearning [12], [14], [68], [46], which is desirable but often
prohibitively expensive.

More practical unlearning techniques where the contribu-
tion of a data point cannot be completely removed and the
guarantees tolerate some error [34], [16], [60], [8], [54], [27],
[30] are commonly referred to as approximate unlearning. An
example for this is amnesiac unlearning [30]. Given a model
m, removing a data point d∗ with amnesiac unlearning means
that we compute

θm′ := θm −
∑
e∈[E]

∆e,d∗ .

In other words, to unlearn data point d∗, we remove the
updates to the model’s parameters that were directly computed
on that data point for all training epochs E. Yet, amnesiac un-
learning only provides approximate guarantees since updates
from unlearnt data points indirectly influence updates from
later points during the iterative nature of the training [60].

Other approaches for approximate unlearning formulate
unlearning as an optimization problem [37], [64] (similar to
training). In every step, instead of reducing the loss of a
data point, we increase it (i.e., unlearn this data point). We
refer to this as optimization-based unlearning. Formally, we
iteratively compute an update ∆e,d∗ for the current model that
is subtracted from its parameters:

θm′ := θm −
∑
e∈[Ê]

∆e,d∗ ,

where Ê denotes the number of unlearning epochs and ∆e,d∗

the update from data point d∗ in epoch e. For model param-
eters θ (in epoch e), we define ∆e,d∗ := −η̂∇θL(fθ(d∗x), d∗y)
with unlearning rate η̂ and loss function L.

B. Cryptographic Preliminaries

We want to provide the user with a cryptographic proof that
their data were indeed deleted. Therefore, we require several
cryptographic primitives that we introduce next.

Collision-Resistant Hash Functions. A family of hash func-
tion H : {0, 1}λ × {0, 1}n → {0, 1}κ is collision-resistant if
it is length-compressing, i.e., κ < n and it is hard to find
collisions, i.e., for all PPT adversaries A, and for all security
parameters λ,

Pr

[
k $← {0, 1}λ; (x0, x1)← A(1λ,Hk) :

x0 ̸= x1 ∧Hk(x0) = Hk(x1)

]
≤ negl(λ) .

In this work, we will denote Hash as a randomly chosen
function from H.

Proof Systems. An interactive proof system describes a
protocol between a prover and a verifier, where the prover
wants to convince the verifier that some statement ϕ for
a given polynomial time decidable relation R is true. The
prover holds a witness ω for the statement. In this work
we are concerned with non-interactive proof systems. A
Succinct Non-Interactive Argument of Knowledge (SNARK)
allows the prover to non-interactively prove the statement

with a short (or succinct) cryptographic proof which can be
verified in time sublinear in the size of the statement. We
denote a SNARK by Π and define it by the three algorithms
(Π.Setup,Π.Prove,Π.Vrfy):

pp ← Π.Setup(1λ, R): The setup algorithm outputs public
parameters pp for a polynomial-time decidable relation
R.

π ← Π.Prove(R, pp, ϕ, ω): The prover algorithm takes as
input pp and (ϕ, ω) ∈ R and returns an argument π,
where ϕ is termed the statement and ω the witness.

b ← Π.Vrfy(R, pp, ϕ, π): The verification algorithm takes
pp, a statement ϕ and an argument π and returns a bit b,
where b = 1 indicates success and b = 0 indicates failure.

Perfect Completeness. Given any true statement, an honest
prover should be able to convince an honest verifier. More
formally, let R be a sequence of families of efficiently
decidable relations R. For all R ∈ R and (ϕ, ω) ∈ R

Pr

[
Π.Vrfy(R, pp, ϕ, π)

∣∣∣∣∣ pp← Π.Setup(1λ, R);
π ← Π.Prove(R, pp, ϕ, ω)

]
= 1 .

Computational Soundness. We say that Π is sound if it is not
possible to prove a false statement. Let LR be the language
consisting of statements for which there exists corresponding
witnesses in R. For a relation R ∼ R, we require that for all
non-uniform PPT adversaries A

Pr

[
ϕ /∈ LR and

Π.Vrfy(R, pp, ϕ, π)

∣∣∣∣∣ pp← Π.Setup(1λ, R);
(ϕ, π)← A(R, pp)

]
≤ negl(λ) .

We further define the notion of witness extractability or
knowledge soundness.

Computational Knowledge Soundness. Π satisfies computa-
tional knowledge soundness if there exists an extractor that can
compute a witness whenever the adversary produces a valid
argument. Formally, for a relation R ∼ R, we require that for
all non-uniform PPT adversaries A there exists a non-uniform
PPT extractor E such that

Pr

[
(ϕ, ω) /∈ R and

Π.Vrfy(R, pp, ϕ, π)

∣∣∣∣∣ pp← Π.Setup(1λ, R);
((ϕ, π);ω)← (A∥E)(R, pp)

]
≤ negl(λ) .

A SNARK Π is secure if it satisfies perfect completeness,
computational soundness and knowledge soundness.

III. VERIFIABLE MACHINE UNLEARNING

We consider the following ecosystem: there are many
users U , each of whom has access to a set of data points
(or dataset). They share their data with a server S which uses
it to learn an ML model. Users can send requests to either
delete or add new data. We assume the server is malicious
and may not faithfully execute unlearning requests. This may
be because the server is unwilling to tolerate model perfor-
mance degradation after data deletion [55], [26], or pay the
computational penalty associated with model updating [12],

[30]. Our goal is to develop a method to verify whether the
server is adhering to users’ requests.

Before presenting our framework, we will first review con-
ceptually simpler constructions. Specifically, we will discuss
three naive approaches A1-A3, and explain why they are
insufficient. From this, we will derive necessary criteria D1-D3
that form the basis for our framework.

A1: Proof via Model Parameters. As a first step towards
verifiable unlearning, assume the server holds a dataset on
which it trained an ML model. To prove that it has unlearnt a
specific data point, the server may provide the user with the
trained model parameters (including random seeds) and the
entire dataset. The user could then locally retrain the model
and compare the resulting parameters with the server’s, or
apply influence techniques [41] to assess whether their data
point contributes to the model’s parameters. However, both
of these methods suffer from a fundamental problem: it is
possible to arrive at the same model parameters even if data
was deleted. For example, recent work by Shumailov et al.
[58] and Thudi et al. [61] describe how a user’s contribution
(towards model parameters) can be approximated from other
entries in a dataset, rendering such approaches insufficient:
the server can claim to have obtained the exact same model
parameters from a number of different datasets.

A2: One-Shot Verified Unlearning. To account for this, we
could extend A1 as follows: Instead of providing the user the
model parameters and dataset only after their data is (claimed
to be) unlearnt, we require the server to prove that it has
executed a pre-specified unlearning algorithm. At this point,
we do not want to delve into the specifics of what such a proof
would entail, but one could envision verified computation
techniques such as cryptographic methods or trusted-execution
environments. Instead, we want to point out some assumptions
that are implicitly made; namely, we have not specified how
the initial model (to which the unlearning algorithm is applied)
was trained. For instance, we might assume that the model
was truthfully trained which is commonly assumed when
evaluating the efficacy of unlearning algorithms [12], [30],
[64]. However, since we are considering a scenario where
the server may behave maliciously during the unlearning
process, we can not automatically assume that the training
was conducted honestly either.

A3: A Naive Iteration-based Protocol. Therefore, we also
need to require the server not only to prove the execution of the
unlearning algorithm but also the training process itself. As a
result, we aim to capture the evolution of an ML model across
multiple iterations of training and unlearning. For instance,
after one user asked to unlearn their data point, another user
might share new data with the server. However, this approach
remains insufficient: a server could prove in one iteration that
it has deleted the first user’s data, but then, in the next training
iteration, it might simply reintroduce the same data point.
This needs to be captured and a protocol needs additional
mechanisms to avoid such behavior.

Desiderata. From the discussion thus far, we unearth three
main requirements to achieve our goal of verifiable unlearning.
D1. The user must be able to verify that the unlearning

algorithm was correctly executed and that the requested
data point has been removed.

D2. The user must be able to verify the model’s evolution,
including the execution of training algorithms.

D3. The system must ensure that the server cannot reintroduce
previously unlearned data (unless explicitly requested to
do so).

IV. OUR FRAMEWORK

We now present our formal framework for verifiable ma-
chine unlearning encompassing the requirements outlined in
the previous section. This framework defines verifiable un-
learning as an interactive protocol summarized in Figure 1.

Dataset. Let D be the distribution of data points. Each user
u ∈ U possesses a set of data points D̂u ∼ D. At the server
side, there is an initially empty “server’s dataset” D0 = ∅
(which is later populated for training an ML model). During
the execution of the protocol, users can request to add or
delete data points which the server adds respectively deletes
from their dataset. Different versions of the resulting server’s
dataset (as it develops during the execution of the protocol)
are denoted by their corresponding index (i.e., D0, D1, . . .). To
attribute data points to users, we assume the server prepends
a unique identifier to each data point. Therefore, entries in Di

are tuples of the form (u, d) ∈ U × D̂u. We refer to such a
unique representation as a data record.

Admissible Functions. Our approach relies on proving the
execution of a pre-specified unlearning algorithm. To capture
formally that we cannot consider training and unlearning
in isolation, we propose a generic interface that we call
admissible functions. One instance is described by a triplet
of functions f = (fI , fT , fU), where fI is an initialization
function, fT is a training function, and fU is an associated
unlearning function. The set of all admissible functions is
denoted by F . We let ppf denote public hyperparameter
which are used for initialization. W.l.o.g., we assume the
functions to be deterministic. Randomness required, e.g., for
the training, can be obtained deterministically with a pseudo-
random number generator and a suitable seed contained in the
hyperparameter and stored in the state. More explicitly:
• (stf ,m) := fI(ppf): The initialization function fI takes

as input hyperparameter ppf and outputs an initial state
stf and model m (e.g., its initial weights).

• (stf ,m) := fT (stf , D
+): The training function fT takes

as input the current state stf and the set D+ of data records
to be added. It outputs an updated state and a new model.

• (stf ,m) := fU (stf , U
+): The unlearning function fU

takes as input the current state stf and the set U+ of data
records to be deleted. It outputs an updated state and a
new model.

Users U {pub, D̂u ∼ D}u∈U Server S (pub)

if not VerifyInit(pub, com0, ρ0) : (stS,0,m0, com0, ρ0)← Init(pub)

abort D+
0 := ∅, U+

0 := ∅

D+
i := D+

i−1, U+
i := U+

i−1

add data points

k-th query D+
i := D+

i ∪ {(u, di,k)}

remove data points

j-th query U+
i := U+

i ∪ {(u, di,j)}

if not VerifyTraining(pub, comi−1, comi, ρi) (stS,i,mi, comi, ρi)← ProveTraining(stS,i−1, pub, D
+
i)

abort D+
i := ∅

if not VerifyUnlearning(pub, comi−1, comi, ρi) : (stS,i,mi, comi, ρi)← ProveUnlearning(stS,i−1, pub, U
+
i)

abort
for (u, di,j) ∈ U+

i :

if not VerifyNonMembership(pub, u, di,j , comi, πu,di,j) : πu,di,j ← ProveNonMembership(stS,i, pub, u, di,j)

abort U+
i := ∅

Initialize

i-th iteration

Proof of Training

OR Proof of Unlearning

com0, ρ0

u ∈ U , di,k ∈ D̂u

u ∈ U , di,j ∈ D̂u

train: comi, ρi

unlearn: comi, ρi

πu,di,j

Fig. 1: Unlearning Framework. We describe protocols in this framework based on a set of admissible functions f . After
initialization, execution proceeds in iterations. In the beginning of each iteration i, users U can issue requests for data to be
added or deleted. After this phase, the server S either performs a proof of training by adding the requested data records in
D+

i to the model or a proof of unlearning by removing the requested data records in U+
i . It computes a commitment comi on

the updated model mi and updated training dataset. Furthermore, the server computes a proof ρi that mi was obtained from
this dataset. The users verify this proof and the commitment. In each iteration of unlearning the server additionally creates a
proof of non-membership for every unlearnt data point conforming to a user that it has complied with a data deletion request.
This proof can be verified by the user against comi.

These functions allow to establish an abstraction to track
the relation between a model and its underlying dataset; we
refer to this as the conceptual dataset. If D is the current
conceptual dataset, removing data records from U+ with fU
updates the dataset as D := D \ U+. Before executing the
protocol, the server and users must agree on f , similar to
the agreement process in the TLS handshake protocol. This
agreement must ensure that f is semantically meaningful and
relevant to the context of the application. Just as in the TLS
protocol, where the security of the entire protocol depends on
selecting a secure cipher suite, the selection of f is crucial for
ensuring the integrity of the process.

Protocol Execution. We denote a protocol in our framework
by Φf for a triplet of functions f = (fI , fT , fU) ∈ F .
The execution of Φf can then be described with two phases
(executed in an iterative manner):

P1. Data Addition/Deletion: At the beginning of each it-
eration, user can issue addition/deletion requests to the
server. The server batches multiple addition/deletion re-
quests by storing all requests in intermediate datasets D+

i

(addition) and U+
i (deletion).

P2. Proof of Training (resp. Unlearning): At the end of an
iteration i, the server updates its dataset by adding (resp.
deleting) the data records stored in D+

i (resp.U+
i). For

training (resp. unlearning), the server updates the model
using function fT (resp. fU) on all records requested to
be added (resp. deleted). It then computes a proof of
training (resp. unlearning) to be verified by the users.
These proofs establishes the state of the evolving dataset
across iterations and model updates and that unlearnt
data records can not be re-added. Based on the current
state, the server then provides each user who requested
a point to be deleted with an individual proof that their
data record is not part of the dataset (i.e., a proof of
non-membership). Finally, at the end of an iteration, the
dataset D+

i (resp.U+
i) is reset.

A. Protocol Syntax

An unlearning protocol Φf w.r.t. admissible functions f
specifies nine algorithms that are executed by the server and
users as shown in Figure 1.

1. Setup and Initialization. A global setup procedure gen-
erates public parameters pub, i.e., pub ← Setup(1λ), where
λ is the security parameter. We assume that pub additionally
include functions f with hyperparameters ppf . Depending on
the application, this procedure can be executed either by the
server or some external entity. Subsequently, pub is given to
all actors.

During initialization, the ML model and protocol state are
initialized using algorithms Init and VerifyInit. Intuitively, the
state captures all information required by the protocol (e.g.,
information to keep track of the evolving dataset) as well
as information required by f for training and unlearning.
For example, for retraining-based unlearning the state would
contain the training dataset D, while for amnesiac unlearning,
the set of deltas ∆e,d∗ (cf. Section II-A) as well as current
model m would be included. Formally, the following two
algorithms are run:

Server: (stS,0,m0, com0, ρ0)← Init(pub)

The server initializes m0 using initialization function fI
and hyperparameter ppf contained in pub. It stores the
resulting state stf in stS,0. The set of training records is
initialized empty, i.e., D0 := ∅. It then commits to m0

and D0 with com0 := (comm
0 ∥com

D
0). We assume that

the commitment to the initial dataset (and all its updates)
is computed deterministically from pub using a function
Commit, i.e., comD

0 := Commit(pub, D0). We do not
make additional assumptions about the commitment at
this point, but we will later see that it needs to be binding.
Finally, proof ρ0 attests the initialization of m0.

User: 0/1← VerifyInit(pub, com0, ρ0)

Users verify two things: (a) the commitment com0 with
D0 = ∅, and (b) the model initialization m0 against proof
ρ0. If verification is successful, the algorithm outputs 1.
On failure, it outputs 0.

2A. Proof of Training. In each iteration i, where the server
performs a proof of training, two algorithms are run:

Server: (stS,i,mi, comi, ρi)

← ProveTraining(stS,i−1, pub, D
+
i)

The server computes the updated model mi by executing
training function fT on state stS,i−1 and all newly added
data records D+

i . The training set of mi is defined as
the union of the previous dataset and new data records,
i.e., Di := Di−1 ∪D+

i . The server commits to both the
model and training data with comi := (comm

i ∥com
D
i)

and computes the proof ρi that (a) model mi was updated
by applying fT , and (b) training data Di does not
contain any unlearnt record, i.e., Di ∩ Ui = ∅, where
Ui :=

⋃
k∈[i] U

+
k is the set of all unlearnt data records so

far. The proof also attests that (c) the set of unlearnt data
records has not changed, i.e., Ui−1 = Ui.

User: 0/1← VerifyTraining(pub, comi−1, comi, ρi)

Users validate properties (a)-(c) (as described above in
ProveTraining) and the update on commitment comi by
verifying the proof ρi against the previous commitment
comi−1 and the new commitment comi.

2B. Proof of Unlearning. In each iteration i, where the server
performs a proof of unlearning, four algorithms are run:

Server: (stS,i,mi, comi, ρi)

← ProveUnlearning(stS,i−1, pub, U
+
i)

The server unlearns all records collected in U+
i and

computes the updated mi by executing function fU on
state stS,i−1 and U+

i . Thus, conceptually, the new training
set of mi is defined as Di := Di−1 \ U+

i . Similar
to ProveTraining, the server commits to both the model
and training data with comi and computes the proof ρi
that (a) model mi was updated by applying fU , and (b)
training data Di does not contain any unlearnt records,
i.e., Di∩Ui = ∅, where Ui := Ui−1∪U+

i . The proof also
attests that (c) the previous set of unlearnt data records
is a subset of the updated set Ui−1 ⊂ Ui. This ensures
that the set of unlearnt data records is append-only and
records can never be removed.

User: 0/1← VerifyUnlearning(pub, comi−1, comi, ρi)

Users validate properties (a)-(c) (as described above in
ProveUnlearning) and the update on commitment comi

by verifying the proof ρi against the previous commit-
ment comi−1 and the new commitment comi.

Server: πu,di,j
← ProveNonMembership(stS,i, pub, u, di,j)

For each record (u, di,j) ∈ U+
i , the server computes a

proof πu,di,j
using information from stS,i that this record

is not part of the training set mi, i.e., (u, di,j) /∈ Di.

User: 0/1← VerifyNonMembership(pub, u, di,j , comi, πu,di,j)

The user verifies with both πu,di,j
and comi that (u, di,j)

was not part of the training data Di of mi.

Practical considerations. The framework ensures that once
data records are deleted, they cannot be re-added later. There-
fore, it suffices if a majority of honest users verify the
updates. Even if a user stops participating after confirming
their data has been deleted, the verification of updates by the
honest majority ensures correct server behavior. In practice,
an additional mechanism will be needed for users to report
invalid proofs and trigger penalties for the server.

If users trust a third party (such as an auditor), the verifica-
tion algorithms VerifyTraining and VerifyUnlearning, can be
executed by this entity to minimize redundant computations.
The results can then be shared with all users (refer to Section
VII-A for further discussion).

Furthermore, it is important to ensure that the server uses
the most up-to-date model for inference. This can be achieved
with techniques for verifiable inference [42], [44], [65], [19],
[38], which is related to, but independent of the problem of
unlearning that we consider in this work.

B. Completeness and Security

Within the proposed framework, we can formally describe
completeness and security requirements of protocols for veri-
fiable unlearning.

Completeness. For completeness, we require that an honest
execution of the protocol yields the expected outputs: for an
honest server, the users successfully verify the initialization
of the model and the proofs for all updates (training and un-
learning) performed by the server. A proof of non-membership

generated for an unlearnt data record is also successfully
verified by the corresponding user. We formally capture this
with the following definition.

Definition 1 (Completeness). Let λ be the security parameter.
A protocol Φf is complete if for all pub ← Setup(1λ), the
following properties are satisfied:

1) Let (stS,0,m0, com0, ρ0)← Init(pub). Then

Pr[VerifyInit(pub, com0, ρ0) = 0] ≤ negl(λ) .

2) Let modei ∈ {train, unlearn} indicate whether proof of
training or proof of unlearning has been performed in
iteration i. Let A be a PPT adversary that outputs a valid
sequence of datasets either to be added {train: D+

i } or
to be deleted {unlearn: U+

i } for all i ∈ [ℓ].
For all i ∈ [ℓ], if modei = train, let (stS,i,mi,
comi, ρi) ← ProveTraining(stS,i−1, pub, D

+
i) and

if modei = unlearn, let (stS,i,mi, comi, ρi) ←
ProveUnlearning(stS,i−1, pub, U

+
i).

Then for all modei = train:

Pr[VerifyTraining(pub, comi−1, comi, ρi) = 0] ≤ negl(λ) ,

and for all modei = unlearn:

Pr[VerifyUnlearning(pub, comi−1, comi, ρi) = 0] ≤ negl(λ) ,

where validity is defined via the following conditions:
∀i, j s. t. i ̸= j : D+

i ∩ D+
j = ∅ and ∀i, j s. t.

j < i : D+
i ∩ U+

j = ∅.
3) For all i ∈ [ℓ] s. t. modei = unlearn: for all (u, d) ∈ U+

i ,
let πu,d ← ProveNonMembership(stS,i, pub, u, d), then

Pr[VerifyNonMembership(pub, u, d, comi, πu,d) = 0] ≤ negl(λ) .

In this definition, we only require computational complete-
ness to allow for a wide range of instantiations. For example,
an instantiation that works on hash values of data records
cannot achieve perfect completeness because of hash colli-
sions. By allowing for computational completeness, however,
we only require that it should be hard for a PPT adversary to
find such collisions (i.e., with a negligible probability).

Security. The security of an unlearning protocol can be
modelled in terms of a security game. In this game, the
adversary, described by a probabilistic algorithm A, takes the
role of the server. Intuitively, the definition need to capture
that a malicious server cannot add (and train on) a data record
that a user requested to delete in a previous iteration. Formally
this is modeled as the winning condition in the security game
in Figure 2. To this end, we define an extractability-based
security model; this allows to cover realistic attackers that
only need to output valid transcripts of the interactions, while
the extractability property ensures that the server must know
some underlying dataset for these transcripts. Note that similar
security definition are commonly used in the context of hash
functions or SNARKs [10], [20], [31].

The adversary in our game has to provide the protocol out-
puts (i.e., the commitments and proofs), whereas the extractor

outputs the corresponding inputs that the adversary used (i.e.,
the underlying datasets). We give a formal description of game
GameUnlearn in Figure 2, which is divided into two stages:

S1. Simulation. The game draws the public parameters
pub using Setup and runs the adversary A on input
pub. The extractor E is run on the same input and
random coins. Additionally, we provide auxiliary input
aux which captures any extra information the adversary
may have whenever the protocol is used in combina-
tion with other cryptographic schemes and allows for
a wide range of possible instantiations. As commonly
done, we restrict this input to only benign inputs [11],
[9], e.g., we do not allow the auxiliary input to en-
code an arbitrary (possibly obfuscated) circuit. At some
point, A will terminate and output a sequence of tuples
(k, (u, d), πu,d , {modei: comi, ρi}i∈[0,ℓ]) for some ℓ ∈ N,
where (u, d) is a data record that was proved to be deleted
in the k-th iteration, and modei ∈ {train, unlearn}. At the
same time, the extractor outputs a sequence of datasets
(D0, . . . , Dℓ).

S2. Finalize. After the adversary has terminated, the game
uses the extractor’s output to compute the set of data
records unlearnt in the k-th iteration based on the datasets
Dk and Dk−1. Recall that the commitment in the frame-
work consists of two parts comm

i and comD
i , where we

need the second part for verification. The game checks
for the following conditions: (a) comD

i was obtained
from Di, (b) the initial proof ρ0 verifies for the initial
commitment com0, (c) each proof of training ρi verifies
for commitments comi−1 and comi, (d) each proof of
unlearning ρi verifies for commitments comi−1 and comi,
(e) the proof of non-membership πu,d verifies for (u, d)
and comk, (f) k < ℓ and (u, d) was unlearnt in iteration
k and re-added in iteration ℓ. If all these properties are
satisfied, then the game outputs 1 and A wins.

We summarize this with the following definition.

Definition 2 (Unlearning). Let λ be the security parameter
and consider game GameUnlearn in Figure 2. Protocol Φf

for data distribution D is unlearning-secure if for all PPT
adversaries A there exists an extractor E such that for all
benign auxiliary inputs aux :

Pr[GameUnlearnA,E,Φf ,D(1
λ)⇒ 1] ≤ negl(λ) .

V. INSTANTIATION

Our framework defines a generic interface for constructing
protocols for verifiable unlearning. To instantiate a protocol
within this framework, we need to address two main chal-
lenges. First, we need to be able to verify the correct execution
of the training and unlearning algorithms to validate any
changes to the dataset. Second, we require a mechanism to
keep track of the dataset across iterations, enabling queries to
verify (non-)membership of specific data records.

In this section, we introduce the core components to account
for these challenges and present a practical instantiation of

GameUnlearnA,E,Φf ,D(1λ)

00 pub← Setup(1λ)
01 (k, (u, d), πu,d , {modei: comi, ρi}i∈[0:ℓ];

{Di}i∈[0:ℓ])← (A∥E)(pub, aux)

02 # Pre-processing
03 U+

k := Dk−1 \Dk

04 Parse comi as (comm
i ∥com

D
i) ∀i ∈ [0 : ℓ]

05 # Evaluate winning condition
06 if Commit(pub, Di) = comD

i ∀i ∈ [0 : ℓ] # Datasets
07 and VerifyInit(pub, com0, ρ0) # Initialization
08 and VerifyTraining(pub, comi−1, comi, ρi)

∀i : modei = train # Training
09 and VerifyUnlearning(pub, comi−1, comi, ρi)

∀i : modei = unlearn # Unlearning
10 and VerifyNonMembership(pub, u, d, comk, πu,d) # Non-Membership
11 and (u, d) ∈ U+

k # Point unlearnt
12 and (u, d) ∈ Dℓ and k < ℓ : # Point re-added later
13 return 1
14 return 0

Fig. 2: Security Game. We define the security of an protocol
Φf in terms of game GameUnlearn. The notation (A∥E)
denotes that both algorithms are run on the same input and
random coins and assigning their results to variables before
resp. after the semicolon. Input aux refers to auxiliary input.

an unlearning protocol based on SNARKs and hash functions.
Our instantiation is generic and we prove its completeness and
security universally for any triplet (fI , fT , fU) of admissible
functions. An overview of the full protocol is depicted in
Appendix A.

Data Representation. To represent the dataset, we split all
data records as those belonging to either training data D or
unlearnt data U. For our instantiation, the server stores two
ordered sets HD and HU of hashed training data records and
unlearnt data records. From both sets, we additionally compute
a hash value in the form of a hash chain (cf. HashData in
Appendix A). This representation allows for efficient caching
of intermediate hashes and, for HU , enables us to easily
prove that entries are append-only (i.e., prevent records from
being removed from the chain) as well as fast membership
verification for unlearnt data records. To account for the
partition of training and unlearnt data as well as the user
admissible function, we instantiate the commitment com as
a tuple of four elements: hash of (a) the state hstf (defined
by f), (b) the model hm , (c) the training data hD , and (d) the
unlearnt data hU . Looking ahead, a collision-resistant hash
function is sufficient for the binding property; it ensures that
the adversary cannot come up with a second input that has the
same hash value.

Proof System. To verify the correct execution of fI , fT ,
and fU , we use proof systems. More specifically, SNARKs,
which allow (broadly speaking) to prove statements of the
form that an output y is the result of applying a function f on
an input x, i.e., y := f(x). Therefore, we define the verification
of the initialization, training updates and unlearning updates
in terms of polynomial decidable binary relations RI , RT and
RU over circuits CI , CT and CU (resp.) as introduced in Sec-

CU (public hstf,i , hstf,i−1 , hmi , hDi , hDi−1 , hUi , hUi−1 ,

private stf,i−1,HDi−1 , U
+
i)

00 # Check input set of hashed training data records
01 if hDi−1 ̸= HashData(HDi−1) :
02 return false
03 # Update and check set of hashed unlearnt data records and training data records
04 H

U+
i

:= {HashDataRecord(u, d)}
(u,d)∈U+

i

05 HDi
:= HDi−1 \ HU+

i

06 if hUi ̸= AppendHashData(hUi−1 ,HU+
i
) or hDi ̸= HashData(HDi) :

07 return false
08 # Check input state, perform unlearning and check outputs
09 hstf,i−1 ̸= HashState(stf,i−1) :
10 return false
11 (stf,i,mi) := fU (stf,i−1, U

+
i)

12 if hstf,i ̸= HashState(stf,i) or hmi ̸= HashModel(mi) :
13 return false
14 return true

Fig. 3: Circuits CU . Based on the circuit, we prove correct
execution of admissible functions for the proof of unlearning.

tion II-B. These circuits describe the required computations—
based on fI , fT , and fU . We exemplary outline CU in
Figure 3; for circuit CI , CT refer to Appendix B. Note that for
verification, only public parameters are required. Furthermore,
by using SNARKs, we can keep the instantiation generic and
universally prove its completeness and security for any triplet
(fI , fT , fU).

1. Initialization. During the protocol’s initialization, function
fI is run to obtain the initial state stf,0 and initial model
m0. Also, the sets of hashed training data and unlearnt
data records are initialized, i.e., HD0

= ∅ and HU0
= ∅.

The commitment consists of hashes to these four values,
i.e., com0 = (hstf,0 , hm0 , hD0 , hU0). Correct initialization is
proved using the SNARK for relation RI captured by circuit
CI . The proof of training ρ0 consists of the statement ϕ0 and
resulting SNARK proof π0, which can be verified by the user
using com0.

2A. Proof of Training. The server starts by executing
ProveTraining. In the i-th iteration, it first performs the model
update by running function fT on the previous state stf,i−1

and new data records D+
i , the result being an updated state

stf,i and a new model mi. Then the server updates the set of
hashed training data records HDi with D+

i and computes the
new commitment comi = (hstf,i , hmi

, hDi
, hUi−1

), where the
commitment to the unlearnt data records is the same as in the
previous iteration since no data was deleted.

The proof ρi is computed using the SNARK for relation
RT captured by circuit CT . The corresponding statement ϕi

and proof πi attest that (a) the model and state were updated
correctly with D+

i , (b) the set of hashed unlearnt data was not
changed, and (c) no data record that was previously unlearnt is
added. The server sends (ρi, comi) to the users. Subsequently,
the users execute VerifyTraining and verify ρi using comi and
the previous commitment comi−1.

2B. Proof of Unlearning. The proof of unlearning con-
sists of two parts: the model update for deleting data
records and the proof of non-membership. The server first
runs ProveUnlearning. In the i-th iteration, it performs the

model update by running function fU on the previous
state stf,i−1 and the set U+

i of data records to be deleted.
The result is the updated state stf,i and model mi. The
set HUi

is computed by appending hashed records of U+
i

to HUi−1
. At the same time, HDi

is computed from HDi−1

by removing those entries. The commitment comi consists of
the hash values (hstf,i , hmi

, hDi
, hUi

). The whole procedure is
proved using circuit CU for relation RU , producing a SNARK
proof πi for the corresponding statement ϕi, which can be
verified by the user using comi and comi−1.

The second part of the proof of unlearning is to provide
a proof on non-membership to all users that requested a
data record (u, d) ∈ U+

i to be deleted. We prove this by
proving its membership in HUi

. If HUi
∩HDi

= ∅, it follows
that (u, d) /∈ Di (which we show to hold when proving
completeness). Specifically, we use the hash chain for HUi :
for a data record, we compute a membership proof as a path
in this chain; this path can be verified by recomputing the chain
and comparing the final result with the hash in the commitment
(i.e., hash value hUi).

Thus, the server performs ProveNonMembership by com-
puting the chain path to a data record (u, d) ∈ U+

i . It outputs
this as proof πu,d which is sent to the user. The user uses the
hash hUi

from the commitment to verify membership. If the
path leads to that hash, the user accepts, and aborts otherwise.

A. Completeness and Security

We now want to prove the completeness and security of the
instantiated protocol. We start to show that our instantiation is
complete according to Definition 1. We give a sketch in the
following; refer to Appendix C for the full proof.

Theorem 1. Let Π be a complete SNARK and Hash a
collision-resistant hash function. Then the instantiated proto-
col satisfies completeness.

Proof (Sketch). Completeness of the initialization (first prop-
erty) is easy to observe since the two hashed datasets are
initialized as empty and the execution of function fI is proven
with the SNARK for relation RI . By completeness of the
SNARK, the users can successfully verify the proof, addi-
tionally using the commitments to state, model and datasets.
The second property follows from the completeness of the
SNARKs for relations RT and RU and collision-resistance of
the hash function. However, note that if a hash collision occurs,
it is not possible to provide the proof of training. Thus, only
computational completeness can be achieved. Given that the
proofs of training and unlearning are successful, completeness
of the proof of non-membership (third property) follows from
the construction and correctness of the hash chain.

We continue to prove that the instantiation is a secure
unlearning protocol according to Definition 2. We again give
a sketch below; refer to Appendix D for the full proof.

Theorem 2. Let Hash be a collision-resistant hash function
and Π be a secure SNARK. Then the instantiated protocol
satisfies unlearning security.

Proof (Sketch). Let A be an adversary in the unlearning
security game (cf. Figure 2). By knowledge soundness of the
SNARK, there exists an extractor which outputs the witness
and thus the datasets Di corresponding to the outputs of the
adversary. We then use the soundness of the SNARK. That
is, A must have computed the proof using a witness, i.e., the
state stf,i and the dataset D+

i (in the proof of training) or
dataset U+

i (in the proof of unlearning), which also determine
the model mi and must correspond to the hash values in the
commitment. By collision-resistance of the hash function, the
adversary cannot find another state, model or dataset for the
same commitment. Thus, applying function fT (or fU) to the
previous state and datasets results in same state and model as
used by A.

Since all proofs as well as the proof of non-membership of
data record (u, d) must verify successfully, the hash of (u, d)
must be contained in the set HUk

which was used to create
the proof. Here, k is the iteration where (u, d) was unlearnt;
the observation holds by assuming soundness of the SNARK
and collision-resistance of the hash function. We can further
infer that (u, d) must also be part of future sets HUi

, k < i ≤
ℓ and by collision-resistance (u, d) must also be part of the
underlying datasets Ui. Finally, we use the fact that the proof
attests that the intersection of HUℓ

and HDℓ
is empty. This

yields a contradiction and shows that (u, d) cannot be present
in the last dataset Dℓ.

VI. IMPLEMENTATION

Next, we implement and compare the main building blocks
of the instantiated protocol. For our implementation, we
consider different triplets of functions f = (fI , fT , fU)
based on techniques from the machine unlearning literature;
namely, retraining-based unlearning, amnesiac unlearning and
optimization-based unlearning (cf. Section II-A). Additionally,
we study the applicability to different ML models and datasets.

To practical implement the protocol, we first need to instan-
tiate SNARK Π and hash function Hash, and then define cir-
cuits CI , CT and CU for all three sets of functions f . Our code
is available at http://github.com/verifiable-unlearning/artifacts.
Experiments are performed on a server running Ubuntu 22.04
with 256 GB RAM and two Intel Xeon Gold 5320 CPUs.

Proof System. Our instantiation is generic and can be imple-
mented with any secure SNARK that satisfies completeness,
soundness, and knowledge soundness (cf. Section II-B). In
this work, we use Spartan [56] as it is efficient and, more
importantly, transparent, i.e., it does not require a trusted
setup. Spartan comes in two variants, as a succinct non-
interactive zero-knowledge (NIZK) proof system and as a
SNARK. Similar to the work of Angel et al. [7], we use
the NIZK variant, where verification time is linear in the
size of the R1CS instance (see below). By using the SNARK
variant, some verification cost can be offset to the server and
a one-time pre-processing step for the user. Depending on
the application, it may be beneficial to use a different proof
system. One alternative is Groth16 [31], which, for example,

https://github.com/cleverhans-lab/verifiable-unlearning

TABLE I: Run-Time of Protocol Functions. We compare
the running time between the protocols subtasks. We con-
sider retraining-based unlearning, amnesiac unlearning, and
optimization-based unlearning. We report the relative differ-
ence with retraining in gray.

Retraining Amnesiac Optimization

Proof of Training
R1CS 8,056,887 ×1.00 8,130,535 ×1.01 7,980,878 ×0.99
Π.Prove w/ RT 4m 32s ×1.00 4m 32s ×1.00 4m 31s ×0.99
Π.Vrfy w/ RT 1m 36s ×1.00 1m 37s ×1.01 1m 35s ×0.99

Proof of Unlearning
R1CS 8,102,288 ×1.00 616,005 ×0.08 919,456 ×0.11
Π.Prove w/ RU 4m 58s ×1.00 2m 18s ×0.46 0m 53s ×0.18
Π.Vrfy w/ RU 1m 48s ×1.00 0m 49s ×0.45 0m 20s ×0.19

Proof of Non-Membership
ComputeChainPath < 1s ×1.00 < 1s ×1.00 < 1s ×1.00
VerifyChainPath < 1s ×1.00 < 1s ×1.00 < 1s ×1.00

R1CS: #constraints

requires a trusted setup, but has the advantage of constant
verification time and proof size.

Circuits. Spartan is implemented on the ristretto255
elliptic curve, a prime-order group abstraction atop
curve25519. Following prior work on verifiable
computation [7], [49], [67], we convert the computation
of our circuits into Rank-1 Constraint Systems (R1CS)
instances; i.e., the statements in RI , RT and RU (cf. Figure 3
and Appendix B) are represented as a constraint system
over a finite field. More specifically, an R1CS instance is
described by a tuple (F, A,B,C, io, n), where F is the finite
field, A,B,C ∈ Fn×n are matrices of size n ≥ |io| + 1
and io is the public input and output of the instance. R1CS
is a generalization of arithmetic circuit satisfiability. We
say an R1CS instance is satisfiable if there exists a witness
ω ∈ Fn−|io|−1 such that (A · z) ◦ (B · z) = (C · z) for
z = (io, 1, ω), where · is the matrix-vector product and ◦
the Hadamard product. Since A,B,C are generally sparse
matrices, a parameter n is sometimes specified, denoting the
maximum number of non-zero entries in each matrix.

We implement the algorithms for training and unlearning
as arithmetic circuits using the ZoKrates programming lan-
guage [17] and use CirC [48] for compilation into R1CS
instances. To represent data and other parameters in a finite
field, we convert them into fixed precision real numbers.

Hash Function. We only require collision-resistance for the
hash function. Although our instantiation is generic and can
work with any hash function, it is beneficial to use an algebraic
hash function where most operations can be directly done in
the finite field of the SNARK. Bit-wise hash functions such
as the SHA family of hash functions are much slower in that
regard. For our construction, we use Poseidon [29] as it is
particularly designed for zero-knowledge proof systems. Other
good options include Pedersen Hash [36, p.76] or MIMC [6].
To be used with Spartan, we implement a version of Poseidon
for the ristretto255 curve.

A. Protocol Functions

We start by comparing the subtasks of proof of training,
proof of unlearning, and proof of non-membership between
the different sets of unlearning algorithms. Therefore, we
implement the high-level functions of the instantiated protocol
for retraining-based unlearning, amnesiac unlearning [30], and
optimization-based unlearning [37], [64]. The main focus is on
the comparison as well as to show feasibility and versatility
of our approach. We discuss possible improvements, e.g.,
regarding scalability, in Section VII-B.

First, we want to compare and understand the overheads of
each subtask between techniques. To this end, we consider a
linear regression model and train this model for 3 epochs with
SGD as a general purpose approach. We use a synthetic dataset
D and set the batch size to 1. We compute a proof of training
with the addition of 100 data points with 10 features each. We
set |D0| = 0, |D+

1 | = 100, and |U0| = 0 accordingly. Subse-
quently, we compute the proof of unlearning and simulate the
deletion of 10 data points and set |D1| = 100, |U1| = 0, and
|U+

2 | = 10. For optimization-based unlearning, we unlearn for
3 epochs. The results are presented in Table I. The complexity
of a statement for Spartan can be measured as the numbers of
R1CS constraints. Across all techniques, compilation time of
R1CS instances ranges between 17s (optimization-based) and
48m 45s (retraining-based).

Proof of Training. We observe that the complexity of
the training is comparable between unlearning approaches.
The underlying R1CS instances have between 7, 980, 878—
8, 130, 535 constraints with proving time between 4m 31s—
4m 32s. Recall that in amnesiac unlearning, we also need to
collect model updates that are later used for unlearning, which
introduces negligible overhead compared to the training costs.

Proof of Unlearning. Runtime of generating and verifying the
proof of unlearning shows more variance. Amnesiac unlearn-
ing is over 2× faster and optimization-based unlearning over
5× faster than retraining-based unlearning. This is despite the
R1CS instance of optimization-based unlearning being almost
50% larger compared to the amnesiac instance (919,456 vs.
616,005 constraints) but it is still more efficient to compute as
it is 63% more sparse (i.e., 7,660,455 vs. 12,248,390 entries
are non-zero). The main difference is that amnesiac unlearning
requires to maintain and verify a state from training (i.e., the
model updates) while optimization-based unlearning does not
require a state.

Proof System. In general, we observe that verification is 2×–
3× faster than proof generation. This is dependent on the
choice of the proof system. For example, by using the SNARK
variant of Spartan, we can offload some of the verification
costs to the server and an additional pre-processing for the
user. In this case, proving time increases to 33m 39s—34m 12s
for the proof of training across all techniques and verification
time reduces to < 1s, but the user needs to run a one-time
pre-processing step which takes between 8m 6s—8m 12s.

TABLE II: Proving Time vs. Model Capacity. We compare
the proving time of proof of training for different classes of
models with increasing capacity.

Classifier R1CS Π.Prove Π.Vrfy

Linear Regression 8,056,887 4m 33s 1m 36s
Logistic Regression 9,048,909 5m 8s 1m 45s
Neural Network (N = 2) 21,867,010 9m 50s 3m 34s
Neural Network (N = 4) 42,030,731 24m 16s 6m 42s

R1CS: #constraints

Proof of Non-Membership. Finally, proof of non-membership
is highly efficient. The implementation is independent of the
unlearning scheme, and both proof generation and verification
take less than one second.

B. Model and Dataset Complexity

The dominant component of the protocols’ run-time is the
complexity of the circuit used to generate proofs of training
and unlearning. This complexity depends mainly on (a) the
unlearning technique, (b) the complexity of the model, and (c)
the size of the dataset. In the following, we first consider model
complexity and study different classes of models. Next, we
look on the complexity of the dataset. In both cases, we focus
on retraining-based unlearning as the baseline from Table I
and, more specifically, on the training circuit CT .

Models. To understand the effects of the choice of ML model,
we follow related work [69], and consider linear regression,
logistic regression and neural networks for classification. For
the neural networks, we focus on models with one hidden
layer and varying numbers of (hidden) neurons N ∈ {2, 4}.
For activation, we use the sigmoid function and approximate
it with a third-order polynomial as done in [39], [40]. Again,
we train each model with SGD for 3 epochs on a synthetic
dataset consisting of 100 training points with 10 features each.

The results are summarized in Table II. We observe that
the R1CS instance increases together with the complexity of
the model. For example, the number of constraints increases
by 1.12× to 9, 048, 909 constraints when going from linear
to logistic regression. This is intuitive: in logistic regression,
we additionally need to evaluate the sigmoid activation which
induces this overhead. In a similar vein, moving from logistic
regression to neural networks increases the circuit further to
21, 867, 010 (N = 2) and 42, 030, 731 (N = 4) constraints.

Benchmark Datasets. To understand the impact of the
dataset, we choose several datasets from the PMLB benchmark
suite [52] (as considered in related work [7] on verifiable
computation of numerical optimization problems) and train
a linear regression model for all datasets. To make results
comparable, we train all models for 3 epochs with a learning
rate of 0.1. As commonly done, we split the data into 80:20
train test split. Models achieve a test accuracy between 73 %
and 92 %.

Results are presented in Appendix E. For all models, we
observe a linear dependence between run-time and dataset
size. Generating a proof for the smallest dataset with 600 total

features (i.e., total points × features) requires 2m 22s and for
the largest dataset with 3,324 total features requires 13m 36s.

VII. DISCUSSION

Next, we discuss alternative ways to instantiate protocols
within our framework and improvements to our construction.

A. Alternative Instantiations

External Trust. Our approach eliminates the need for a trusted
third party by relying solely on cryptographic protocols to
ensure security. To enhance efficiency and reduce the burden
on users, a trusted auditor can be introduced to verify on their
behalf (as we discuss towards the end of Section IV). This
could be done using either a dedicated trusted third party, such
as another cloud provider with no incentive to collude with
the server, or by employing distributed auditors where trust
derives from independent verifications. For instance, Meta
recently announced that they will implement key transparency
in WhatsApp to complement the manual scanning of QR
codes, outsourcing verification to a third party [4].

Trusted Hardware. If TEEs (e.g., Intel SGX [45]) are avail-
able, training and unlearning procedures can be performed
within them. More specifically, we can replace the SNARK in
our instantiation with a TEE such that the circuit is computed
inside the TEE. In this case, the proof consists of a digest
signed by the TEE provider, which can be verified by the user.
However, when using a TEE, one needs to consider common
concerns such as trusting a hardware vendor, availability of
said vendor for signing the digests, limited memory [32], their
applicability to ML-related tasks that involve GPU computa-
tion [62], and side-channels [47], [63]. Some of these issues
have been addressed by Weng et al. [66] (cf. Section VIII).

Minimizing Redundancy. In our instantiation, users who
request unlearning are required to verify future updates to
ensure that their data has not been reintroduced. If we combine
VC with an additional proof of secure data erasure, we can
give similar guarantees while not requiring the user to verify
all updates. However, secure erasure is a non-trivial problem
in itself and was considered in e.g., [51]. Formalizing deletion
compliance from a server’s perspective [24] can also be seen
as complementary problem.

B. Scalability

Our experiments show that the run-time of the instantiated
protocol is dominated by generating and verifying the proof of
training and unlearning. We base our construction on Verified
Computation (VC) and, as a result, inherit its scalability
limitations. This can also be observed for other VC-based
approaches in the ML setting [57], [35], [39], [40]. Any future
advances in VC will lead to run-time improvements for our
approach. Nevertheless, we want discuss how we can improve
performance with the primitives available today.

SNARK-friendly Techniques. Certain computations are more
amendable to efficient SNARK verification than others, for

example, the development of SNARK-friendly hash func-
tions [29], [6], [36]. Similarly, there exist ML paradigms
that are also more amenable to verification. For instance,
inference using quantized models [38], [19] or lookup tables
for expensive computations [38] reduce costs. Furthermore,
when there exists a unique ML model (i.e., a global optimum
for the underlying optimization problem), proving and veri-
fication complexity can be improved even further [7]. In our
experiments, we observe that online computation of model up-
dates in optimization-based unlearning is faster than verifying
model updates in amnesiac unlearning as the verification of
input values involves expensive calculation of hash values. We
envision future work to focus on developing SNARK-friendly
unlearning techniques combining above observations.

Offloading Computation. Orthogonal to the employed un-
learning technique and ML model, one can offload expensive
proof generation steps to the user (e.g., the evaluation of a
non-linear activation function). We can split the proving and
verification processes such that the server creates a proof for
certain types of computations and shares partial results with
the (honest) user who performs (and thus verifies) expensive
computations themselves.

Application-specific Relaxations. Finally, depending on the
application, it might be possible to avoid the expensive gen-
eration of the proof of training. Consider, for instance, an
application where data is collected once and only be removed
at a later point in time (e.g., biomedical user studies or other
human-involved data collection processes). In this case, proof
of training only needs to be performed once and—if users
further trust the initial training phase—it might be sufficient
to only prove unlearning.

C. Privacy

Formalizing privacy for unlearning protocols is an inter-
esting direction for future work and requires to establish an
additional security definition. Although it is out-of-scope for
our work, we want to highlight that our instantiation does not
require the users to know the datasets or model. In fact, they
only see hash commitments and the SNARK proofs. If the
hash function satisfies pseudo-randomness or is modeled as
a random oracle, and assuming that the input space is large
enough, then hash values do not leak information about the un-
derlying data points. Additionally, if the SNARK satisfies the
zero-knowledge property [28] (which most SNARKs including
Spartan do), then the proof also does not leak information
about the witness. However, we require users to know whether
training or unlearning happened because they need to know
which verification procedure to run. Privacy in the context
of model inference has been studied more extensively, e.g.,
Gao et al. [21] define security notions for deletion hiding
and reconstruction. An overview for different formalizations
of inference privacy is also given by Salem et al. [53].

VIII. RELATED WORK

Our approach to verifiable unlearning intersects with various
areas of security and ML research. Below, we explore related
concepts and methods.

Verifying Unlearning. Prior work [22], [59] aims at verifying
unlearning by embedding backdoors [33] in models (using data
whose unlearning is to be verified) and verifying backdoor
removal on unlearning. However, such approaches are prob-
abilistic with no theoretical guarantees of when they work,
unlike our cryptography-informed approach which produces
verifiable proofs. The work of Guo et al. [34] provides end-
users with a certificate that the new model is influenced by
the specific data in a quantifiably low manner. While this
certificate conceptually bounds the influence of a data point
from an algorithmic perspective, it provides no guarantee
that the entity executing the algorithm (i.e., server) did so
correctly. In our work, we aim to capture exactly this and
provide cryptographic guarantees. Weng et al. [66] propose
an unlearning framework based on TEEs. Their protocol uses
SISA unlearning [12] and can be captured by our framework as
well. In contrast to our instantiation that is based only on cryp-
tographic primitives, their approach relies on trusted hardware
(i.e., the correctness and integrity of the SGX enclave) as well
as cryptographic assumptions (i.e., EUF-CMA security of the
signature scheme used by the enclave and collision-resistance
of the hash function).

Verifiable Computation. We use verifiable computation for
proof of training and proof of unlearning. There has been
a series of works demonstrating a remarkable progress in
making these schemes (and those related to verification of
data used for computation) practical (e.g., [56], [25], [50],
[20]). To verify the computation of training an ML model,
Zhao et al. [69] also propose verification using a SNARK.
However, their primary objective is to design a scheme to
ensure that the payments made to servers are correct. In our
work, we design a scheme to verify the correctness of data
deletion when training ML models. Otti [7] is a compiler
that is aimed at designing efficient arithmetic circuits for
problems that involve optimization (such as those commonly
found in ML). DIZK [67] is a distributed system capable of
distributing the compute required for proof creation. Garg et
al. [23] describes an approach to verify ML training based
on MPC-in-the-head, while the work of Abbaszadeh et al. [5]
developes a sumcheck-based proof system for the gradient-
descent algorithm and framework for recursive composition
of proofs. Both approaches may be extended to a full-fledged
(retraining-based) unlearning protocol using our framework.

Proving Model Inference. There exist various approaches
to proving inference using SNARKs [42], [44], [65], [19],
[38] which complements our protocol in that regard. Another
approach would be to use trusted execution environments to
do so as suggested in [66].

IX. CONCLUSION

The problem of unlearning has gained significant interest
in terms of definitions and algorithms for updating model
parameters. However, regardless of the definition or the al-
gorithm the server uses to update the model, the user has no
way to verify that the server indeed executed the unlearning
procedure. In this paper, we define unlearning as a security
problem and propose a framework to capture the guaran-
tees verifiable unlearning needs to provide. We propose the
first verifiable unlearning procedure based on cryptographic
primitives instantiated using SNARKs and hash chains. Our
implementation shows the feasibility of our approach on sev-
eral benchmark datasets and machine learning models. Future
work includes determining which unlearning techniques are
most suitable for efficient verifiable computation, while at the
same time devising methods specifically for verifying machine
learning code.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under
the project ALISON (492020528) and Germany’s Excellence
Strategy - EXC 2092 CASA - 390781972. Thorsten Eisen-
hofer conducted this research while interning at the Vector
Institute. Olga Ohrimenko has been supported in part by
the joint CATCH MURI-AUSMURI. Nicolas Papernot would
like to acknowledge his sponsors, who support his research
with financial and in-kind contributions, including Apple,
CIFAR through the Canada CIFAR AI Chair program, DARPA
through the GARD program, Intel, NSERC through the Dis-
covery grant, Meta, and Ontario through the Early Researcher
Award program. Resources used in preparing this research
were provided, in part, by the Province of Ontario, the Gov-
ernment of Canada through CIFAR, and companies sponsoring
the Vector Institute. We would like to thank members of the
CleverHans Lab for their feedback. We would also like to
thank Sebastian Angel, Jess Woods, and Eleftherios Ioannidis
for input related to the SNARK compilers.

REFERENCES

[1] General Data Protection Regulation (GDPR). Official Legal Text, 2016.
[2] California Consumer Privacy Act (CCPA). Official Legal Text, 2018.
[3] Personal Information Protection and Electronic Documents Act

(PIPEDA). Official Legal Text, 2019.
[4] Deploying Key Transparency at WhatsApp. Engineering at Meta, 2023.
[5] Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, and Dimitrios

Papadopoulos. Zero-knowledge proofs of training for deep neural
networks. In ACM Conference on Computer and Communications
Security (CCS), 2024.

[6] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy,
and Tyge Tiessen. MiMC: Efficient Encryption and Cryptographic
Hashing with Minimal Multiplicative Complexity. In International Con-
ference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2016.

[7] Sebastian Angel, Andrew J. Blumberg, Eleftherios Ioannidis, and Jess
Woods. Efficient Representation of Numerical Optimization Problems
for SNARKs. In USENIX Security Symposium, 2022.

[8] Thomas Baumhauer, Pascal Schöttle, and Matthias Zeppelzauer. Ma-
chine Unlearning: Linear Filtration for Logit-based Classifiers. Machine
Learning, 2022.

[9] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia
Lin, Aviad Rubinstein, and Eran Tromer. The Hunting of the SNARK.
Journal of Cryptology, 2017.

[10] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
Extractable Collision Resistance to Succinct Non-Interactive Arguments
of Knowledge, and Back Again. In Innovations in Theoretical Computer
Science (ITCS), 2012.

[11] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the Exis-
tence of Extractable One-Way Functions. SIAM Journal on Computing,
2016.

[12] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-
Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and
Nicolas Papernot. Machine Unlearning. In IEEE Symposium on Security
and Privacy (S&P), 2021.

[13] Gavin Brown, Mark Bun, Vitaly Feldman, Adam D. Smith, and Kunal
Talwar. When is Memorization of Irrelevant Training Data Necessary
for High-Accuracy Learning? In ACM SIGACT Symposium on Theory
of Computing (STOC), 2021.

[14] Yinzhi Cao and Junfeng Yang. Towards Making Systems Forget with
Machine Unlearning. In IEEE Symposium on Security and Privacy
(S&P), 2015.

[15] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn
Song. The Secret Sharer: Evaluating and Testing Unintended Memo-
rization in Neural Networks. In USENIX Security Symposium, 2019.

[16] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias
Humbert, and Yang Zhang. Graph Unlearning. In ACM Conference
on Computer and Communications Security (CCS), 2021.

[17] Jacob Eberhardt and Stefan Tai. ZoKrates - Scalable Privacy-Preserving
Off-Chain Computations. In IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), 2018.

[18] Vitaly Feldman. Does Learning Require Memorization? A Short Tale
About a Long Tail. In ACM SIGACT Symposium on Theory of
Computing (STOC), 2020.

[19] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo
Chu. ZEN: Efficient Zero-Knowledge Proofs for Neural Networks.
Cryptology ePrint Archive, 2021.

[20] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga
Ohrimenko, and Bryan Parno. Hash First, Argue Later: Adaptive
Verifiable Computations on Outsourced Data. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[21] Ji Gao, Sanjam Garg, Mohammad Mahmoody, and Prashant Nalini
Vasudevan. Deletion Inference, Reconstruction, and Compliance in
Machine (Un)learning. In Privacy Enhancing Technologies Symposium
(PETS), 2022.

[22] Xiangshan Gao, Xingjun Ma, Jingyi Wang, Youcheng Sun, Bo Li,
Shouling Ji, Peng Cheng, and Jiming Chen. VeriFi: Towards Verifiable
Federated Unlearning. Computing Research Repository (CoRR), 2022.

[23] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Moham-
mad Mahmoody, Guru-Vamsi Policharla, and Mingyuan Wang. Exper-
imenting with zero-knowledge proofs of training. In ACM Conference
on Computer and Communications Security (CCS), 2023.

[24] Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. For-
malizing Data Deletion in the Context of the Right to Be Forgotten.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2020.

[25] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive
Verifiable Computing: Outsourcing Computation to Untrusted Workers.
In Annual International Cryptology Conference (CRYPTO), 2010.

[26] Amirata Ghorbani and James Zou. Data Shapley: Equitable Valuation
of Data for Machine Learning. In International Conference on Machine
Learning (ICML), 2019.

[27] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal
Sunshine of the Spotless Net: Selective Forgetting in Deep Networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[28] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge
Complexity of Interactive Proof Systems. SIAM Journal on Computing
(SICOMP), 1989.

[29] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A New Hash Function for Zero-
Knowledge Proof Systems. In USENIX Security Symposium, 2021.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://laws-lois.justice.gc.ca/PDF/P-8.6.pdf
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/

[30] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac Machine
Learning. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

[31] Jens Groth. On the Size of Pairing-Based Non-interactive Arguments.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2016.

[32] Karan Grover, Shruti Tople, Shweta Shinde, Ranjita Bhagwan, and
Ramachandran Ramjee. Privado: Practical and Secure DNN Inference
with Enclaves. Computing Research Repository (CoRR), 2018.

[33] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets:
Identifying Vulnerabilities in the Machine Learning Model Supply
Chain. Computing Research Repository (CoRR), 2017.

[34] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van
Der Maaten. Certified Data Removal from Machine Learning Models.
In International Conference on Machine Learning (ICML), 2020.

[35] Inbar Helbitz and Shai Avidan. Reducing ReLU Count for Privacy-
Preserving CNN Speedup. Computing Research Repository (CoRR),
2021.

[36] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash.
Protocol Specification (Version 2022.3.4), 2022.

[37] Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee,
Lajanugen Logeswaran, and Minjoon Seo. Knowledge Unlearning for
Mitigating Privacy Risks in Language Models. Computing Research
Repository (CoRR), 2022.

[38] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Scaling
up Trustless DNN Inference with Zero-Knowledge Proofs. Computing
Research Repository (CoRR), 2022.

[39] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee
Cheon. Logistic Regression Model Training based on the Approximate
Homomorphic Encryption. Cryptology ePrint Archive, 2018.

[40] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian
Jiang. Secure Logistic Regression Based on Homomorphic Encryption:
Design and Evaluation. JMIR Medical Informatics, 2018.

[41] Pang Wei Koh and Percy Liang. Understanding Black-box Predictions
via Influence Functions. In International Conference on Machine
Learning (ICML).

[42] Seunghwan Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vCNN:
Verifiable Convolutional Neural Network. Cryptology ePrint Archive,
2020.

[43] Klas Leino and Matt Fredrikson. Stolen Memories: Leveraging Model
Memorization for Calibrated White-Box Membership Inference. In
USENIX Security Symposium, 2020.

[44] Tianyi Liu, Xiang Xie, and Yupeng Zhang. ZkCNN: Zero Knowledge
Proofs for Convolutional Neural Network Predictions and Accuracy. In
ACM Conference on Computer and Communications Security (CCS),
2021.

[45] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. In-
novative Instructions and Software Model for Isolated Execution. In
Workshop on Hardware and Architectural Support for Security and
Privacy (HASP), 2013.

[46] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-
Delete: Gradient-Based Methods for Machine Unlearning. In Algorith-
mic Learning Theory (ALT), 2021.

[47] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Se-
bastian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious Multi-
Party Machine Learning on Trusted Processors. In USENIX Security
Symposium, 2016.

[48] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: Compiler
Infrastructure for Proof Systems, Software Verification, and more. In
IEEE Symposium on Security and Privacy (S&P), 2022.

[49] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. Scaling
Verifiable Computation Using Efficient Set Accumulators. In USENIX
Security Symposium, 2020.

[50] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly Practical Verifiable Computation. In IEEE Symposium on
Security and Privacy (S&P), 2013.

[51] Daniele Perito and Gene Tsudik. Secure Code Update for Embedded
Devices via Proofs of Secure Erasure. In European Symposium on
Research in Computer Security (ESORICS), 2010.

[52] Joseph D. Romano, Trang T. Le, William G. La Cava, John T. Gregg,
Daniel J. Goldberg, Praneel Chakraborty, Natasha L. Ray, Daniel S.
Himmelstein, Weixuan Fu, and Jason H. Moore. PMLB v1.0: An
Open-Source Dataset Collection for Benchmarking Machine Learning
Methods. Bioinformatics, 2022.

[53] Ahmed Salem, Giovanni Cherubin, David Evans, Boris Köpf, Andrew
Paverd, Anshuman Suri, Shruti Tople, and Santiago Zanella Béguelin.
SoK: Let The Privacy Games Begin! A Unified Treatment of Data
Inference Privacy in Machine Learning. Computing Research Repository
(CoRR), 2022.

[54] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha
Suresh. Remember What You Want to Forget: Algorithms for Machine
Unlearning. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[55] Ozan Sener and Silvio Savarese. Active Learning for Convolutional
Neural Networks: A Core-Set Approach. In International Conference
on Learning Representations (ICLR), 2017.

[56] Srinath Setty. Spartan: Efficient and General-Purpose zkSNARKs
Without Trusted Setup. In Annual International Cryptology Conference
(CRYPTO), 2020.

[57] Avital Shafran, Gil Segev, Shmuel Peleg, and Yedid Hoshen. Crypto-
Oriented Neural Architecture Design. In IEEE International Conference
on Acoustics, Speech and Signal Processing, (ICASSP), 2021.

[58] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nico-
las Papernot, Murat A. Erdogdu, and Ross J. Anderson. Manipulating
SGD with Data Ordering Attacks. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[59] David Marco Sommer, Liwei Song, Sameer Wagh, and Prateek Mittal.
Towards Probabilistic Verification of Machine Unlearning. Computing
Research Repository (CoRR), 2020.

[60] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Pa-
pernot. Unrolling SGD: Understanding Factors Influencing Machine
Unlearning. In IEEE European Symposium on Security and Privacy
(EuroS&P), 2022.

[61] Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the
Necessity of Auditable Algorithmic Definitions for Machine Unlearning.
In USENIX Security Symposium, 2022.

[62] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
Execution Environments on GPUs. In Symposium on Operating Systems
Design and Implementation, (OSDI), 2018.

[63] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky
Cauldron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX. In ACM Conference on Computer and Communications
Security (CCS), 2017.

[64] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad
Rieck. Machine Unlearning of Features and Labels. In Symposium on
Network and Distributed System Security (NDSS), 2023.

[65] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao
Wang. Mystique: Efficient Conversions for Zero-Knowledge Proofs with
Applications to Machine Learning. In USENIX Security Symposium,
2021.

[66] Jia-Si Weng, Shenglong Yao, Yuefeng Du, Junjie Huang, Jian Weng,
and Cong Wang. Proof of Unlearning: Definitions and Instantiation.
Computing Research Repository (CoRR), 2022.

[67] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and
Ion Stoica. DIZK: A Distributed Zero Knowledge Proof System. In
USENIX Security Symposium, 2018.

[68] Yinjun Wu, Edgar Dobriban, and Susan B. Davidson. DeltaGrad: Rapid
Retraining of Machine Learning Models. In International Conference
on Machine Learning (ICML), 2020.

[69] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and
Bo Feng. VeriML: Enabling Integrity Assurances and Fair Payments
for Machine Learning as a Service. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 2021.

https://zips.z.cash/protocol/protocol.pdf

A ADDITIONAL ALGORITHMS AND FULL PROTOCOL

We instantiate the protocol Φf for the triple of admissible functions f = (fI , fT , fU) with two primitives: a SNARK Π,
and a hash function Hash. Additional algorithms are described below.

Users U {(RI , RT , RU), (ppI , ppT , ppU), D̂u ∼ D}u∈U Server S ((RI , RT , RU), (ppI , ppT , ppU), (fI , fT , fU), ppf)

(stf,0,m0) := fI(ppf)

HD0
:= ∅,HU0

:= ∅
com0 := (HashState(stf,0),HashModel(m0),

HashData(HD0
),HashData(HU0

))

Compute (ϕ0, ω0) ∈ RI using com0 and (stf,0,m0)

Verify ϕ0 valid for com0 π0 ← Π.Prove(RI , ppI , ϕ0, ω0)

if not Π.Vrfy(RI , ppI , π0, ϕ0) : stS,0 := (stf,0,HD0
,HU0

, com0)

abort D+
0 := ∅, U+

0 := ∅

D+
i := D+

i−1, U+
i := U+

i−1

add data samples

k-th query D+
i := D+

i ∪ {(u, di,k)}

remove data samples

j-th query U+
i := U+

i ∪ {(u, di,j)}

Parse stS,i−1 as (stf,i−1,HDi−1
,HUi−1

, hstfi−1
, hmi−1

, hDi−1
, hUi−1

)

(stf,i,mi) := fT (stf,i−1, D
+
i)

HDi
:= HDi−1

∪ {HashDataRecord(u, d)}(u,d)∈D+
i

comi := (HashState(stf,i),HashModel(mi),

HashData(HDi
), hUi−1

)

Compute (ϕi, ωi) ∈ RT using (hstf,i−1
, hDi−1

, hUi−1
, comi)

and (stfi−1,HUi−1 , D
+
i)

Verify ϕi valid for (comi−1, comi) πi ← Π.Prove(RT , ppT , ϕi, ωi)

if not Π.Vrfy(RT , ppT , πi, ϕi) : stS,i := (stf,i,HDi ,HUi , comi)

abort D+
i := ∅

Parse stS,i−1 as (stf,i−1,HDi−1
,HUi−1

, hstfi−1
, hmi−1

, hDi−1
, hUi−1

)

(stf,i,mi) := fU (stf,i−1, U
+
i)

HUi
:= HUi−1 ∪ {HashDataRecord(u, d)}(u,d)∈U+

i

HDi
:= HDi−1

\ {HashDataRecord(u, d)}(u,d)∈U+
i

comi := (HashState(stf,i),HashModel(mi),

HashData(HDi
),HashData(HUi

))

Compute (ϕi, ωi) ∈ RU using (hstf,i−1
, hDi−1

, hUi−1
, comi)

and (stfi−1,HDi−1 , U
+
i)

Verify ϕi valid for (comi−1, comi) πi ← Π.Prove(RU , ppU , ϕi, ωi)

if not Π.Vrfy(RU , ppU , πi, ϕi) : stS,i := (stf,i,HDi ,HUi , comi)

abort
for (u, di,j) ∈ U+

i :

Fetch hUi from comi πu,di,j ← ComputeChainPath(di,j ,HUi)

if not VerifyChainPath(hUi
, di,j , πu,di,j

) : U+
i := ∅

abort

Initialize

i-th iteration

Proof of Training

OR Proof of Unlearning

com0, ρ0 := (ϕ0, π0)

u ∈ U , di,k ∈ D̂u

u ∈ U , di,j ∈ D̂u

train: comi, ρi := (ϕi, πi)

unlearn: comi, ρi := (ϕi, πi)

πu,di,j

Init

VerifyInit

ProveTraining

VerifyTraining

ProveUnlearning

VerifyUnlearning

ProveNonMembership

VerifyNonMembership

HashData(H)
00 Ψ := Hash(d∅)
01 for hd ∈ H :
02 Ψ := Hash(Ψ, hd)
03 return Ψ

AppendHashData(h,H)
04 Ψ := h
05 for hd ∈ H :
06 Ψ := Hash(Ψ, hd)
07 return Ψ

HashDataRecord(u, d = (x, y))

08 hd := Hash(u)
09 for xj ∈ x :
10 hd := Hash(hd ,Hash(xj))
11 hd := Hash(hd ,Hash(y))
12 return hd

HashModel(m = [w0, . . . , wn])

13 hm := Hash(m[0])
14 for wi ∈ m[1:] :
15 hm := Hash(hm ,Hash(wi))
16 return hm

HashState(stf)

17 hstf := Hash(stf [0])
18 for si ∈ hstf [1:] :
19 hstf := Hash(hstf , si)
20 return hstf

VerifyChainPath(u, d, hU , πu,d)
21 # recompute hash Ψ from path πu,d

22 Ψ := Hash(πu,d [0],HashDataRecord(u, d))
23 for node in πu,d [1 :] :
24 Ψ := Hash(Ψ, node)
25 # verify final hash
26 return JΨ = hUK

ComputeChainPath(u, d,HU)

27 hd := HashDataRecord(u, d)
28 idxd := HU .index(hd)
29 if idxd = ⊥ :
30 return ⊥
31 # get intermediate hash from chain below d

32 Ψ := HashData(HU : idxd
)

33 πu,d := [Ψ]
34 # add path from d

35 for hd ∈ HUidxd+1: :

36 πu,d .append(hd)
37 return πu,d

B CIRCUITS

Based on circuits CI and CT , we prove correct execution of admissible functions for initialization and proof of training.

CI(public hstf,0 , hm0 , hD0 , hU0 , private stf,0,m0)
00 # Check input for initialization
01 if hstf,0 ̸= HashState(stf,0) or

hm0 ̸= HashModel(m0) or
hD0 ̸= HashData(∅) or
hU0 ̸= HashData(∅) :

02 return false
03 return true

CT (public hstf,i , hstf,i−1 , hmi , hDi , hDi−1 , hUi , hUi−1 , private stf,i−1,HUi−1 , D
+
i)

04 # Check input set of hashed unlearnt data records
05 if hUi−1 ̸= HashData(HUi−1) :
06 return false
07 # Update and check set of hashed training data records and unlearnt data records
08 H

D+
i
:= {HashDataRecord(u, d)}

(u,d)∈D+
i

09 if hDi ̸= AppendHashData(hDi−1 ,HD+
i
) or hUi ̸= hUi−1 or HUi−1 ∩HD+

i
̸= ∅ :

10 return false
11 # Check input state, perform training and check outputs
12 if hstf,i−1 ̸= HashState(stf,i−1) :
13 return false
14 (stf,i,mi) := fT (stf,i−1, D

+
i)

15 if hstf,i ̸= HashState(stf,i) or hmi ̸= HashModel(mi) :
16 return false
17 return true

C COMPLETENESS PROOF

Proof (of Theorem 1). We need to prove the three properties in Definition 1 capturing the initialization, the proof of training
and the proof of unlearning which includes the proof of non-membership.

Initialization. First, running Init yields the initialized state stf,0 and model m0 obtained by executing fI . Using the hash function
to commit to those two values and additionally the empty sets HD0

and HU0
, an instance (ϕ0, ω0) ∈ RI can be derived and

the SNARK proof π0 can be created using Π.Prove. By correctness of the relation and completeness of the SNARK, ϕ0 will
be valid for com0 and Π.Vrfy(RI , ppI , π0, ϕ0) = 1.

Proof of Update. For the second property, recall the inputs and outputs of ProveTraining and ProveUnlearning. The state
stS,i−1 contains the state stf,i−1, the set HDi−1 of hashed data records, the set HUi−1 of hashed unlearnt data records and the
previous commitment comi−1. In the proof of training, the new state stf,i and the new model mi are computed by running
function fT on stf,i−1 and the set D+

i of data records to be added. The new sets HDi
and HUi

are computed from the previous
ones and updated with D+

i . The commitment is computed by hashing the four components.
Then the training instance (ϕi, ωi) ∈ RT can be derived and the SNARK proof πi computed. The proof attests

(cf. Appendix B) that (1) mi was computed correctly since fT was executed, (2) the training data does not contain unlearnt
record since the hashes of the new data records are not contained inHUi , and (3) the set of unlearnt data records has not changed
since the commitments to the unlearnt data records are the same. By correctness of the relation and perfect completeness of
the SNARK, we have Π.Vrfy(RT , ppT , πi, ϕi) = 1.

Note that there exists a special case where the server is unable to create a proof although the datasets are valid. This is the
case whenever there exist two distinct data records (u, d) ∈ D+

i , (u′, d′) ∈ Ui, where Ui =
⋃

j∈[i] U
+
j is the dataset implicitly

contained in HUi
, such that HashDataRecord(u, d) = HashDataRecord(u′, d′). However, we only require computational

completeness and assume that the datasets are provided by a PPT adversary. Then this translates to finding a collision for the
hash function which happens with negligible probability if the hash function is collision-resistance. Hence, VerifyTraining will
output 1 with probability 1− negl(λ).

Proof of Unlearning. Completeness for the proof of unlearning proceeds similar. The new state stf,i and the new model mi

are computed by running function fU on stf,i−1 and the set U+
i of data records to be deleted. The new sets HDi and HUi are

computed from the previous ones and updated by removing and appending U+
i , respectively. The commitment is computed

by hashing the four components.
The unlearning instance (ϕi, ωi) ∈ RU is derived and the SNARK proof πi that is computed attests (cf. Figure 3) that (1)

mi was computed correctly since fU was executed, (2) the training data does not contain unlearnt record since we removed
the records in U+

i from HDi , and (3) previous set of unlearnt data records is a subset of the updated set since we added the
records in U+

i to HUi to which we commit. By correctness of the relation and perfect completeness of the SNARK, we have
Π.Vrfy(RU , ppU , πi, ϕi) = 1 and VerifyUnlearn will output 1 with probability 1.

Finally, consider the algorithm ProveNonMembership. If a data record (u, d) was unlearnt in iteration i, then its hash is
present in HUi

. The proof of non-membership πu,d consists of the chain path to (u, d) in the chain of HUi
. Let comi be

the commitment for this iteration, then by correctness of the tree path algorithm, VerifyNonMembership will output 1 with
probability 1.

G0-G2

00 ppI ← Π.Setup(1λ, RI)
01 ppT ← Π.Setup(1λ, RT)
02 ppU ← Π.Setup(1λ, RU)
03 (k, (u, d), πu,d , {modei: (hstf,i , hmi , hDi , hUi), (ϕi, πi)}i∈[0:ℓ];

{Di}i∈[0:ℓ])← (A∥E)(RI , RT , RU , ppI , ppT , ppU , fI , fT , fU , ppf)
04

05 # Pre-processing
06 U0 := ∅
07 for i ∈ [ℓ]
08 if modei = train:
09 D+

i := Di \Di−1

10 if modei = unlearn:
11 U+

i := Di−1 \Di

12 Ui := Ui−1 ∪ U+
i

13

14 # Verify commitments
15 for i ∈ [0 : ℓ] :
16 HDi

:= {HashDataRecord(u, d)}(u,d)∈Di

17 h′
Di

:= HashData(HDi)
18 if h′

Di
̸= hDi :

19 return 0
20

21 # Verify initialization
22 Verify ϕ0 valid for (hstf,0 , hm0 , hD0 , hU0)
23 if not Π.Vrfy(RI , ppI , π0, ϕ0) :
24 return 0
25

26 # Re-compute initialization
27 (stf,0,m0) := fI(ppf) // G1-G2

28 if hstf,0 ̸= HashState(hstf,0) or hm0 ̸= HashModel(m0) : // G1-G2

29 return 0 // G1-G2

30 # Verify proof of training
31 for i ∈ [ℓ] s. t. modei = train:
32 Verify ϕi valid for (hstf,i , hmi , hDi , hUi)
33 if not Π.Vrfy(RT , ppT , πi, ϕi) :
34 return 0
35

36 # Verify proof of unlearning
37 for i ∈ [ℓ] s. t. modei = unlearn:
38 Verify ϕi valid for (hstf,i , hmi , hDi , hUi)
39 if not Π.Vrfy(RU , ppU , πi, ϕi) :
40 return 0
41

42 # Re-compute state and model and compare to commitment
43 for i ∈ [ℓ] : // G1-G2

44 if modei = train: // G1-G2

45 (stf,i,mi) := fT (stf,i−1, D
+
i) // G1-G2

46 if modei = unlearn: // G1-G2

47 (stf,i,mi) := fT (stf,i−1, U
+
i) // G1-G2

48 if hstf,i ̸= HashState(stf,i) or hmi ̸= HashModel(mi) : // G1-G2

49 return 0 // G1-G2

50

51 # Verify proof of non-membership
52 if not VerifyChainPath(hUk , u, d, πu,d) :
53 return 0
54

55 # Check membership of d in Ui

56 for i ∈ [k : ℓ] : // G2

57 if (u, d) /∈ Ui : // G2

58 return 0 // G2

59

60 # Adversary wins if point unlearned & re-added
61 if k < ℓ and (u, d) ∈ U+

k and (u, d) ∈ Dℓ :
62 return 1
63 return 0

Fig. 4: Games G0-G2 for the proof of Theorem 2. We prove unlearning security for our instantiated protocol Φf in Appendix
A, where f = (fI , fT , fU) and hyperparameter ppf are fixed by the participating parties and determine relations RI , RT and
RU .

D SECURITY PROOF

Proof (of Theorem 2). Let A be an adversary against unlearning security (as defined in Figure 2) of our instantiation. We
will first argue that for all A there exists an extractor E that outputs the underlying datasets Di. This follows directly from
the knowledge soundness of the SNARK for relations RI , RT and RU . For this, look at the private inputs to the circuits in
Figure 3 and Appenix B which translate to the witness. Initialization gives us that D0 = ∅. The proof of training inputs D+

i

and the proof of unlearning inputs U+
i such that we can extract Di = Di−1 ∪D+

i if modei = train and Di = Di−1 \ U+
i if

modei = unlearn.

We continue with the sequence of games given in Figure 4.

Game G0. Let G0 be the original game GameUnlearn and E be the extractor. Recall that the adversary must output a sequence
of tuples (k, (u, d), πu,d , {modei: comi, ρi}i∈[0:ℓ]) for some ℓ ∈ N, where comi = (hstf,i , hmi , hDi , hUi) and ρi = (ϕi, πi)
for i ∈ [0 : ℓ]. We iterate over the winning conditions and return 0 as soon as one of them is violated (cf. Figure 4). For
book-keeping we also compute all sets of unlearnt data points Ui, as well as the sets D+

i , U+
i from Di as described for the

extractor. Note that this is only a conceptual change at this point and we have

Pr[G0 ⇒ 1] = Pr[GameUnlearnA,E,Φf ,D(1
λ)⇒ 1] .

Game G1. In G1, we compute the state stf,i and the model mi for each iteration from the corresponding datasets by applying
fI , fT and fU . We then check whether the hashes of state and model correspond to hstf,i and hmi in the commitment. If this
is not the case, the game outputs 0. We claim

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ negl(λ) .

To prove the claim we argue in the following steps:

• First, πi proves that the adversary knows a state st′f,i and a dataset D+
i
′ for each proof of training (or a dataset U+

i
′ for

each proof of unlearning) such that model m′
i was computed by applying function fT (or function fU) to state st′f,i−1

and dataset D+
i
′ (or dataset U+

i
′). It also proves that the commitment aligns with the inputs. Since the functions are

deterministic, we thus have hstf,i = HashState(st′f,i) and hmi
= HashData(m′

i) as well as hDi
= HashData(H′

Di
),

where H′
Di

is the set of all hashed data records in D′
i.

By soundness of the SNARK, the adversary can only forge a proof for an invalid statement with negligible probability,
so we can assume the proof was generated honestly with a witness. By knowledge soundness, the extractor is able to
compute this witness such that D′

i = Di.
• Second, we claim that then st′f,i = stf,i and m′

i = mi are the actual state and model used for the next iteration. This is
true unless the adversary finds a collision in the hash function such that HashState(st′f,i) = HashState(stf,i) = hstf,i or
HashModel(m′

i) = HashModel(mi) = hmi
, which we assume to happen only with negligible probability.

Game G2. In G2, we check whether the data record (u, d) output by A is contained in the underlying datasets Ui of the k-th
and all subsequent iterations. We will show that

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ negl(λ) .

For this we first look again at the SNARK proof πi and the underlying circuits. If a proof of training is performed, the adversary
must prove that hUi = hUi−1 . This implies—assuming no hash collision occurs—that HUi = HUi−1 and Ui = Ui−1. If a proof
of unlearning is performed, the SNARK proof ensures that HUi−1

⊂ HUi
and thus Ui−1 ⊂ Ui, again using collision-resistance

of the hash function. Thus, if (u, d) ∈ Uk, it must also be true that (u, d) ∈ Uk+1, ..., (u, d) ∈ Uℓ. By soundness of the
SNARK, the adversary cannot prove a false statement, so the above claims must hold.

We also know that (u, d) ∈ Uk since the proof of non-membership consists of the path from the hashed data record (u, d) to
the hash hUk

contained in the k-th commitment. Since the adversary can only win if the proof verifies successfully, we know
that in this case the hash value of (u, d), in the following denoted by hu,d := HashDataRecord(u, d), must be a node in the
hash chain constructed from HUk

. Unless the adversary finds another data record (u′, d′) such that HashDataRecord(u′, d′)
maps to the same hash value hu,d—which happens with negligible probability—the record (u, d) must be contained in Uk.

Finally, we show that Pr[G2 ⇒ 1] ≤ negl(λ). For this, recall that πi also attests that no unlearnt data point is contained in
the dataset, in particular that the intersection HDi ∩HUi is empty. Together with the fact that the commitments hDi and hUi

are constructed from HDi
and HUi

(due to soundness of the SNARK), the hashed datasets must have been obtained from the
corresponding dataset Di and Ui (unless the adversary has found a collision in the hash function). Combining with previous
results, this implies that Di ∩ Ui = ∅ for all i ∈ [ℓ]. As shown above, we know that (u, d) ∈ Uℓ. The final winning condition
requires that (u, d) ∈ Dℓ. This cannot be the case since it would contradict the fact that the intersection of the two sets is
empty, which proves the final claim.

Collecting the probabilities yields
Pr[GameUnlearnA,E,Φf ,D(1

λ)] ≤ negl(λ) ,

which concludes the proof of Theorem 2.

E SCALABILITY TO BENCHMARK DATASETS

We compute the proof of training for different datasets from the PMLB benchmark suite [52]. Size refers to #data points ×
#features and R1CS refers to #constraints.

Dataset Size R1CS Π.Prove Π.Vrfy

Creditscore 100 6 3,986,308 2m 22s 0m 47s
Patient 88 8 4,579,718 2m 28s 0m 53s
Cy Young 92 10 5,903,988 3m 16s 1m 9s
Corral 160 6 6,347,236 3m 43s 1m 15s
Lawsuit 264 4 7,190,981 4m 7s 1m 27s
Breast cancer 286 9 16,514,048 9m 25s 3m 18s
Monk3 554 6 21,841,281 13m 36s 4m 32s

	Introduction
	Background
	Machine Learning Preliminaries
	Cryptographic Preliminaries

	Verifiable Machine Unlearning
	Our Framework
	Protocol Syntax
	Completeness and Security

	Instantiation
	Completeness and Security

	Implementation
	Protocol Functions
	Model and Dataset Complexity

	Discussion
	Alternative Instantiations
	Scalability
	Privacy

	Related Work
	Conclusion
	References
	 A: Additional Algorithms and Full Protocol
	 B: Circuits
	 C: Completeness Proof
	 D: Security Proof
	 E: Scalability to Benchmark Datasets

