
Verifiable and Provably Secure
Machine Unlearning

Thorsten Eisenhofer 1, Doreen Riepel 2, Varun Chandrasekaran 3,
Esha Ghosh 4, Olya Ohrimenko 5, and Nicolas Papernot 6

1 BIFOLD & TU Berlin, 2 CISPA Helmholtz Center for Information Security,
3 University of Illinois Urbana-Champaign, 4 Microsoft Research,
5 The University of Melbourne, 6 University of Toronto & Vector Institute

Machine Unlearning

Share point

D = { , , , , …}

2

Server

Delete point

D′ = D∖{ }

m ← Train(D)

m′ ← Unlearn(m,)ok!
↯ Might not be
done faithfully

Model might leak sth
about its training data

Can we trust the server?
Goal: Prove that the unlearning actually happened

Proof via Model Parameters

Share point

D = { , , , , …}

D′ , m′

3

Server

Delete point

D′ = D∖{ }

m ← Train(D)

If : abort∈ D′

↯ Always possible if and share
the underlying distribution

D D′

Thudi et al. “On the Necessity of Auditable Algorithmic Definitions for Machine Unlearning”, USENIX’20

Plausibility forgery

Shumailov et al. “Manipulating SGD with Data Ordering Attacks”, NeurIPS’21

↯ Possible to efficiently construct
s.t. but

D′

m = m′ D ≠ D′

If : abortm ≠ m′

m ← Train(D)

m′ ← Unlearn(m,)

One-Shot Verifiable Unlearning

Share point

D = { , , , , …}

D′ , m′

4

m′ , ρ ← ProveUnlearn(m,), m

If not : abortVerifyUnlearn(m, m′ , , ρ)

Server

Delete point

D′ = D∖{ }

m ← Train(D)

If : abort∈ D′

Verifiable Computation

y := f(x)
Proof that y is the result

of evaluating f on x

↯ May be forged

How can we prove unlearning?

, ρ

A Naive Iteration-based Protocol

Share point

D = { , , , , …}

D′ , m′

5

m′ , ρ ← ProveUnlearn(m,), ρ

If not : abortVerifyUnlearn(m, m′ , , ρ)

m, τ ← ProveTrain(D)D, m, τ

If not : abortVerifyTrain(m, D, τ)

Server

If : abortD′ ≠ D ∪ { }

Delete point

D′ = D∖{ }Verify consistency
of the dataset

A Naive Iteration-based Protocol

Share point

D = { , , , , …}

D′ , m′

6

m′ , ρ ← ProveUnlearn(m,), ρ

If not : abortVerifyUnlearn(m, m′ , , ρ)

m, τ ← ProveTrain(D)D, m, τ

If not : abortVerifyTrain(m, D, τ)

Server

If : abortD′ ≠ D ∪ { }

Delete point

D′ = D∖{ }Verify consistency
of the dataset

Users U {pub, D̂u → D}u→U Server S (pub)

if not VerifyInit(pub, com0, ω0) : (stS,0,m0, com0, ω0) ↑ Init(pub)

abort D+
0 := ↓, U+

0 := ↓

D+
i := D+

i↑1, U+
i := U+

i↑1

add data points

k-th query D+
i := D+

i ↔ {(u, di,k)}

remove data points

j-th query U+
i := U+

i ↔ {(u, di,j)}

if not VerifyTraining(pub, comi↑1, comi, ωi) (stS,i,mi, comi, ωi) ↑ ProveTraining(stS,i↑1, pub, D
+
i)

abort D+
i := ↓

if not VerifyUnlearning(pub, comi↑1, comi, ωi) : (stS,i,mi, comi, ωi) ↑ ProveUnlearning(stS,i↑1, pub, U
+
i)

abort
for (u, di,j) ↗ U+

i :

if not VerifyNonMembership(pub, u, di,j , comi,εu,di,j) : εu,di,j ↑ ProveNonMembership(stS,i, pub, u, di,j)

abort U+
i := ↓

Initialize

i-th iteration

Proof of Training

OR Proof of Unlearning

com0, ω0

u ↗ U , di,k ↗ D̂u

u ↗ U , di,j ↗ D̂u

train: comi, ωi

unlearn: comi, ωi

εu,di,j

Share only
commitment on

 model and data

Multiple
users

Multiple
iterations

Framework for Verifiable Unlearning

GameUnlearnA,E,!f ,D(1ω)

00 pub → Setup(1ω)
01 (k, (u, d),ωu,d , {modei: comi, εi}i→[0:ε];

{Di}i→[0:ε]) → (A↑E)(pub, aux)

02 # Pre-processing
03 U+

k := Dk↑1 \Dk

04 Parse comi as (comm
i ↑com

D
i) ↓i ↔ [0 : ϑ]

05 # Evaluate winning condition
06 if Commit(pub, Di) = com

D
i ↓i ↔ [0 : ϑ] # Datasets

07 and VerifyInit(pub, com0, ε0) # Initialization
08 and VerifyTraining(pub, comi↑1, comi, εi)

↓i : modei = train # Training
09 and VerifyUnlearning(pub, comi↑1, comi, εi)

↓i : modei = unlearn # Unlearning
10 and VerifyNonMembership(pub, u, d, comk,ωu,d) # Non-Membership
11 and (u, d) ↔ U+

k # Point unlearnt
12 and (u, d) ↔ Dε and k < ϑ : # Point re-added later
13 return 1
14 return 0

Fig. 2: Security Game. We define the security of an protocol
!f in terms of game GameUnlearn. The notation (A→E)
denotes that both algorithms are run on the same input and
random coins and assigning their results to variables before
resp. after the semicolon. Input aux refers to auxiliary input.

an unlearning protocol based on SNARKs and hash functions.
Our instantiation is generic and we prove its completeness and
security universally for any triplet (fI , fT , fU) of admissible
functions. An overview of the full protocol is depicted in
Appendix A.

Data Representation. To represent the dataset, we split all
data records as those belonging to either training data D or
unlearnt data U. For our instantiation, the server stores two
ordered sets HD and HU of hashed training data records and
unlearnt data records. From both sets, we additionally compute
a hash value in the form of a hash chain (cf. HashData in
Appendix A). This representation allows for efficient caching
of intermediate hashes and, for HU , enables us to easily
prove that entries are append-only (i.e., prevent records from
being removed from the chain) as well as fast membership
verification for unlearnt data records. To account for the
partition of training and unlearnt data as well as the user
admissible function, we instantiate the commitment com as
a tuple of four elements: hash of (a) the state hstf (defined
by f), (b) the model hm , (c) the training data hD , and (d) the
unlearnt data hU . Looking ahead, a collision-resistant hash
function is sufficient for the binding property; it ensures that
the adversary cannot come up with a second input that has the
same hash value.

Proof System. To verify the correct execution of fI , fT ,
and fU , we use proof systems. More specifically, SNARKs,
which allow (broadly speaking) to prove statements of the
form that an output y is the result of applying a function f on
an input x, i.e., y := f(x). Therefore, we define the verification
of the initialization, training updates and unlearning updates
in terms of polynomial decidable binary relations RI , RT and
RU over circuits CI , CT and CU (resp.) as introduced in Sec-

CU (public hstf,i , hstf,i→1 , hmi , hDi , hDi→1 , hUi , hUi→1 ,

private stf,i↑1,HDi→1 , U
+
i)

00 # Check input set of hashed training data records
01 if hDi→1 ↗= HashData(HDi→1) :
02 return false
03 # Update and check set of hashed unlearnt data records and training data records
04 HU+

i
:= {HashDataRecord(u, d)}(u,d)→U+

i

05 HDi := HDi→1 \ HU+
i

06 if hUi ↗= AppendHashData(hUi→1 ,HU+
i
) or hDi ↗= HashData(HDi) :

07 return false
08 # Check input state, perform unlearning and check outputs
09 hstf,i→1 ↗= HashState(stf,i↑1) :
10 return false
11 (stf,i,mi) := fU (stf,i↑1, U

+
i)

12 if hstf,i ↗= HashState(stf,i) or hmi ↗= HashModel(mi) :
13 return false
14 return true

Fig. 3: Circuits CU . Based on the circuit, we prove correct
execution of admissible functions for the proof of unlearning.

tion II-B. These circuits describe the required computations—
based on fI , fT , and fU . We exemplary outline CU in
Figure 3; for circuit CI , CT refer to Appendix B. Note that for
verification, only public parameters are required. Furthermore,
by using SNARKs, we can keep the instantiation generic and
universally prove its completeness and security for any triplet
(fI , fT , fU).

1. Initialization. During the protocol’s initialization, function
fI is run to obtain the initial state stf,0 and initial model
m0. Also, the sets of hashed training data and unlearnt
data records are initialized, i.e., HD0 = ↑ and HU0 = ↑.
The commitment consists of hashes to these four values,
i.e., com0 = (hstf,0 , hm0 , hD0 , hU0). Correct initialization is
proved using the SNARK for relation RI captured by circuit
CI . The proof of training ω0 consists of the statement ε0 and
resulting SNARK proof ϑ0, which can be verified by the user
using com0.

2A. Proof of Training. The server starts by executing
ProveTraining. In the i-th iteration, it first performs the model
update by running function fT on the previous state stf,i→1

and new data records D+
i , the result being an updated state

stf,i and a new model mi. Then the server updates the set of
hashed training data records HDi with D+

i and computes the
new commitment comi = (hstf,i , hmi , hDi , hUi→1), where the
commitment to the unlearnt data records is the same as in the
previous iteration since no data was deleted.

The proof ωi is computed using the SNARK for relation
RT captured by circuit CT . The corresponding statement εi

and proof ϑi attest that (a) the model and state were updated
correctly with D+

i , (b) the set of hashed unlearnt data was not
changed, and (c) no data record that was previously unlearnt is
added. The server sends (ωi, comi) to the users. Subsequently,
the users execute VerifyTraining and verify ωi using comi and
the previous commitment comi→1.

2B. Proof of Unlearning. The proof of unlearning con-
sists of two parts: the model update for deleting data
records and the proof of non-membership. The server first
runs ProveUnlearning. In the i-th iteration, it performs the

Security Definition

Definition (Unlearning)
Let be the security parameter and consider game

. Protocol for data distribution is
unlearning-secure if for all PPT adversaries there exists
an extractor such that for all benign auxiliary inputs

λ
GameUnlearn Φf 𝒟

𝒜
ℰ 𝖺𝗎𝗑

Pr[GameUnlearn𝒜,ℰ,Φf ,𝒟(1λ) ⇒ 1] ≤ negl(λ)

Prove completeness and security
of protocols under this definition!

7

Adversary wins if they can
forge an unlearning response

Run adversary 𝒜

Evaluate output of 𝒜

A protocol is unlearning-secure if no
efficient adversary exists that can

forge an unlearning response.

Thank you!

Take Aways

Verifiable unlearning
- Verify that unlearning algorithm was executed
- Consider lifecycle of the model

Security definition
- Instantiate protocol under this definition
- Allows to prove completeness and security

Paper and code
github.com/cleverhans-lab/verifiable-unlearning

Fin

http://github.com/cleverhans-lab/verifiable-unlearning

