

Verifiable and Provably Secure Machine Unlearning

Thorsten Eisenhofer¹, Doreen Riepel², Varun Chandrasekaran³, Esha Ghosh⁴, Olya Ohrimenko⁵, and Nicolas Papernot⁶

- ¹ BIFOLD & TU Berlin, ² CISPA Helmholtz Center for Information Security,
- ³ University of Illinois Urbana-Champaign, ⁴ Microsoft Research,
- ⁵ The University of Melbourne, ⁶ University of Toronto & Vector Institute

Machine Unlearning

Can we true Goal: Prove that the unle

- Can we trust the server?
- Goal: Prove that the unlearning actually happened

2

Proof via Model Parameters

- **4** Possible to efficiently construct D's.t. m = m' but $D \neq D'$
- ⁴ Always possible if *D* and *D*' share the underlying distribution


```
If \blacksquare \in D': abort
m \leftarrow \operatorname{Train}(D)
If m \neq m': abort
```

- Shumailov et al. "Manipulating SGD with Data Ordering Attacks", NeurIPS'21
- Thudi et al. "On the Necessity of Auditable Algorithmic Definitions for Machine Unlearning", USENIX'20

One-Shot Verifiable Unlearning

How can we prove unlearning?

4

A Naive Iteration-based Protocol

If not VerifyTrain(*m*, *D*, *τ*): abort

Verify consistency of the dataset

If $D' \neq D \cup \{\blacksquare\}$: abort

If not VerifyUnlearn($m, m', \blacksquare, \rho$): abort

$D = \{\blacksquare, \blacksquare, \blacksquare, \blacksquare, \ldots\}$ $m, \tau \leftarrow \operatorname{ProveTrain}(D)$

 D, m, τ

Delete point

 $D' = D \setminus \{\bullet\}$ m', $\rho \leftarrow \text{ProveUnlearn}(m, \bullet)$

D',m',
ho

5

Security Definition

Adversary wins if they can forge an unlearning response

Definition (Unlearning)

Let λ be the security parameter and consider game GamAJprotocolisun/earning-secure if no **1S** unlea efficient adversary exists that can exists an extractor gesich that for all henigr auxiliary inputs aux $\Pr[\text{GameUnlearn}_{\mathscr{A},\mathscr{E},\Phi_{f},\mathscr{D}}(1^{\lambda}) \Rightarrow 1] \leq \operatorname{negl}(\lambda)$

> **Prove completeness and security** of protocols under this definition!

Take Aways

Verifiable unlearning

- Verify that unlearning algorithm was executed
- Consider lifecycle of the model

Security definition

- Instantiate protocol under this definition
- Allows to prove completeness and security

Paper and code

github.com/cleverhans-lab/verifiable-unlearning

I I AI IN YUU:

