

Thorsten Eisenhofer¹, Doreen Riepel², Varun Chandrasekaran³, Esha Ghosh⁴, Olya Ohrimenko⁵, and Nicolas Papernot⁶

¹BIFOLD & TU Berlin, ²CISPA Helmholtz Center for Information Security, ³University of Illinois Urbana-Champaign, ⁴ Microsoft Research, ⁵ The University of Melbourne, ⁶ University of Toronto & Vector Institute

Motivation

 $D = \{\blacksquare, \blacksquare, \blacksquare, \blacksquare, \ldots\}$ $m \leftarrow \mathsf{Train}(D)$

 $D'=D'ackslash \{ullet\}$ $m' \leftarrow \mathsf{Unlearn}(m, \blacksquare)$

But can we trust the server?

Goal: Prove that unlearning was performed correctly!

Security Definition

$GameUnlearn_{\mathcal{A},\mathcal{E},\Phi_f,\mathcal{D}}(1^\lambda)$	
00 pub $\leftarrow Setup(1^{\lambda})$	
01 $(k, (u, d), \pi_{u,d}, \{mode_i: \operatorname{com}_i, \rho_i\}_{i \in [0:\ell]};$ $\{D_i\}_{i \in [0:\ell]}) \leftarrow (\mathcal{A} \ \mathcal{E})(p_i)$	oub, aux)
02 # Pre-processing	
O3 $U_k^+\coloneqq D_{k-1}\setminus D_k$	
04 Parse com_i^m as $(\operatorname{com}_i^m \ \operatorname{com}_i^D) \ \forall i \in [0:\ell]$	
05 # Evaluate winning condition	
06 if Commit(pub, $D_i) = com_i^D \ \forall i \in [0:\ell]$	# Datasets
o 7 and VerifyInit(pub, com $_0, \rho_0$)	# Initialization
08 and VerifyTraining(pub, com_{i-1}, com_i, ρ_i)	
$\forall i: mode_i = train$	# Training
09 and VerifyUnlearning(pub, com_{i-1}, com_i, ρ_i)	
$\forall i: mode_i = unled$	arn # Unlearning
10 and VerifyNonMembership(pub, $u, d, \operatorname{com}_k, \pi_{u,d}$)	# Non-Membership
11 and $(u,d) \in U_k^+$	# Point unlearnt
12 and $(u,d) \in D_\ell$ and $k < \ell$: #1	Point re-added later
13 return 1	
14 return 0	

Definition (Unlearning) "A protocol is unlearning-secure if no efficient adversary exists that can forge an unlearning response in GameUnlearn."

Verifiable and Provably Secure Machine Unlearning

	Proof via model parameters no
	sufficient. Can efficiently construe
C	lataset D' s.t. $D' \neq D$ but $m = m$
	Verifiable Unlearning
	Proof of unlearning
	Verify correct execution of
	unlearning algorithm
	Proof of training
	Consider full lifecycle of

Adversary wins if they can forge an unlearning response

Instantiation

Prove correct execution of training and unlearning algorithm using techniques from verifiable computation.

nitialize		
f not VerifyInit(pub, com $_0, \rho_0$):	com_0, ρ_0	(st
abort		D_0^-
-th iteration		D_i
# add data points	$u \in \mathcal{U}, d_i \in \widehat{D}$	U
k-th query	$\xrightarrow{u \in u, \ u_{i,k} \in D_{u}}$	D_i
# remove data points	$u \in \mathcal{U}, \ d_{i,i} \in \widehat{D}_u$	
<i>j</i> -th query		U_i^{\neg}
Proof of Training		
if not VerifyTraining(pub, com_{i-1}, com_i, ρ_i)	<i>train:</i> $\operatorname{com}_i, \rho_i$	(st
abort		D_i
OR Proof of Unlearning		
if not VerifyUnlearning(pub, com_{i-1}, com_i, ρ_i):	<i>unlearn:</i> com_i, ρ_i	(st
abort		
if not VerifyNonMembership(pub $u d \in com (\pi, \pi)$).	$\pi_{u,d_{i,j}}$	for
abort	<	U^{+}

Verifiable computation

y := **f**(**x**)

"Proof that y is the result of evaluating f on x"

C_U	(public h_{st_j}
	private st
00	# Check inpu
01	if $h_{D_{i-1}} \neq$
02	return f
03	# Update and
04	$\mathcal{H}_{U_i^+} \coloneqq \{F$
05	$\mathcal{H}_{D_i} \coloneqq \mathcal{H}_{D_i}$
06	if $h_{U_i} \neq A$
07	return f
08	# Check inpi
09	$h_{{ m st}_{f,i-1}} eq$
10	return fa
11	$(st_{f,i}, m_i)$
12	if $h_{st_{f,i}} \neq$
13	return f
14	return true

Server
$$S$$
 (pub)
 $S_{i,0}, m_0, \operatorname{com}_0, \rho_0) \leftarrow \operatorname{Init}(\operatorname{pub})$
 $F \coloneqq \emptyset, U_0^+ \coloneqq \emptyset$
 $F \coloneqq D_{i-1}^+, U_i^+ \coloneqq U_{i-1}^+$
 $F \coloneqq D_i^+ \cup \{(u, d_{i,k})\}$
 $F \coloneqq U_i^+ \cup \{(u, d_{i,j})\}$
 $S_{i,i}, m_i, \operatorname{com}_i, \rho_i) \leftarrow \operatorname{ProveTraining}(\operatorname{st}_{S,i-1}, \operatorname{pub}, D_i^+)$
 $F \coloneqq \emptyset$
 $S_{i,i}, m_i, \operatorname{com}_i, \rho_i) \leftarrow \operatorname{ProveUnlearning}(\operatorname{st}_{S,i-1}, \operatorname{pub}, U_i^+)$
 $F (u, d_{i,j}) \in U_i^+:$
 $\pi_{u, d_{i,j}} \leftarrow \operatorname{ProveNonMembership}(\operatorname{st}_{S,i}, \operatorname{pub}, u, d_{i,j})$
 $F \coloneqq \emptyset$

 $h_{f,i}, h_{\mathsf{st}_{f,i-1}}, h_{m_i}, h_{D_i}, h_{D_{i-1}}, h_{U_i}, h_{U_{i-1}}, h_{U_i}, h_{U_{i-1}}, h_{U_i}, h_{U_{i-1}}, h_{U_i}, h_$ $\mathcal{H}_{D_{i-1}}, \mathcal{H}_{D_{i-1}}, U_i^+)$ out set of hashed training data records HashData $(\mathcal{H}_{D_{i-1}})$: false nd check set of hashed unlearnt data records and training data records $\mathsf{HashDataRecord}(u,d)\}_{(u,d)\in U_i^+}$ $\mathcal{L}_{D_{i-1}} \setminus \mathcal{H}_{U_i^+}$ $\mathsf{AppendHashData}(h_{U_{i-1}}, \mathcal{H}_{U_{i}^+}) \text{ or } h_{D_i} \neq \mathsf{HashData}(\mathcal{H}_{D_i}):$ false out state, perform unlearning and check outputs HashState(st_{f,i-1}): $\coloneqq f_U(\mathsf{st}_{f,i-1}, U_i^+)$ $\mathsf{HashState}(\mathsf{st}_{f,i})$ or $h_{m_i} \neq \mathsf{HashModel}(m_i)$: