
SECURITY OF

MACHINE LEARNING SYSTEMS

DISSERTATION

Thorsten Eisenhofer

A dissertation submitted to the Faculty of Computer Science
at Ruhr University Bochum for the degree of

DOCTOR OF NATURAL SCIENCES

Reviewer: Prof. Dr. Thorsten Holz
CISPA Helmholtz Center for Information Security

Prof. Dr. Nicolas Papernot
University of Toronto and Vector Institute

Prof. Dr. Konrad Rieck
Technische Universität Berlin

Defense: June 19, 2023

Abstract

Machine learning (ML) models are not programmed explicitly but are learnt from a
set of data points. This data-centric paradigm allows for diverse applications, and ML
models are now widely deployed in practice as internal components of ML systems.
This inclusion of machine learning, however, introduces a new attack surface to these
systems since ML models are vulnerable to a myriad of possible attacks. While prior
work made remarkable progress in understanding such attacks from the perspective of
the model, the deployment in practical systems introduces additional constraints, and
commonly studied threat models do not sufficiently express the knowledge, capabilities,
and goals of practical adversaries.

In this work, we therefore investigate the security of machine learning with a sys-
tems security approach. By viewing the ML model as part of a system, we study the
increased attack surface of practical systems and how such systems can be secured. We
start by investigating how a vulnerability within an ML component can be leveraged
for an attack against the enclosing system. As a practical example, we consider assign-
ment systems which are increasingly used to assist the academic reviewing process.
Subsequently, we turn to the security of an ML system from a defender’s point of view.
By including the context of a specific deployment, we propose a principled approach
to leverage domain-specific priors to improve the robustness of internal ML models.
We practically evaluate our approach on speech recognition models employed as sub-
components in voice assistants. Finally, we consider the lifecycle of an ML system.
Computer systems are not static and are continuously maintained and updated. For
an ML system, this also affects internal ML models. As a practical example, we focus
on the problem of verifiable machine unlearning that requires capturing consistency
across model updates and evolving datasets.

V

Acknowledgements

First and foremost, I want to thank my advisor Thorsten Holz for all the support in
the past years. Thank you for providing such a great work environment, leaving us the
freedom to pursue our own research ideas, and always support us with our goals.

I would also like to thank Nicolas Papernot for hosting me in the cleverhans lab and
all the support along the way. Special thanks also to Varun Chandrasekaran for taking
such good care of me during my internship and afterwards.

Many thanks to Konrad Rieck for all the support with our project and for letting me
join your group at the TU Berlin as a postdoctoral researcher. I am looking forward to
many interesting discussions in the future!

To my colleagues and friends I found along the way. To Lea Schönherr: for great col-
laborations on our academic and sometimes not so academic projects. To Lars Specke-
meier: for many hours of discussion and all our late-night sessions. To Nils Albartus, Nils
Bars, Lukas Bernhard, Merlin Chlosta, Joel Frank, Tobias Scharnowski, Nico Schiller,
and Moritz Schlögel: research is full of ups and downs and it is great to have you to
always rely on! To Avital Shafran and Yannis Cattan: thanks for making our summer
in Toronto unforgettable.

To my family and especially my sister Heike Eisenhofer for always having my back
and to Doreen Riepel for supporting me throughout the doctorate and beyond.

Finally, to all those who have been a part of my getting there: Hojjat Aghakhani,
Tim Blazytko, Jonathan Evertz, Maximilian Golla, Philipp Görz, Dorothea Kolossa,
Christopher Kruegel, Jana Kolot, Jonas Möller, Erwin Quiring, Roei Schuster, Giovanni
Vigna, and many more. Thank you all!

VII

Contents

I Introduction 1

1 Introduction 3

2 Background 9
2.1 Machine Learning . 9
2.2 Adversarial Machine Learning . 13

3 Security of ML Systems 17
3.1 Feature-Problem-Space Attacks . 20
3.2 Domain-Specific Priors . 25
3.3 Security Beyond the Model . 30

4 Conclusions 35

References 37

II Publications 49

List of Publications 51

A Subverting Automatic Paper-Reviewer Assignment 53

B Taming Audio Adversarial Examples 103

C Verifiable and Provably Secure Machine Unlearning 147

IX

Part I

Introduction

1

Introduction

Artificial intelligence is on the rise and affects many aspects of our lives. Its disruptive
potential is compared with the invention of electricity, the internet, or the smartphone
and will fundamentally transform the way we work, communicate, receive healthcare,
travel, and learn [63, 33, 30]. Enabled by exponential advances in Machine Learning
(ML) and computing capabilities, underlying algorithms allow for a paradigm shift in
computer science: instead of being programmed explicitly, ML algorithms learn from
data itself. These algorithms can automatically find structure in their training data,
which are condensed to ML models that can be used to reason about the underlying
problem domain. This versatility of machine learning allows a broad applicability, and
ML models are now regularly deployed in practice, including in safety and security-
critical systems such as antivirus scanners [54, 98, 34], firewalls [76], autonomous
cars [71], CSAM detectors [8], mobile networks [45], and user authentication [102, 39].

The inclusion of machine learning, however, introduces a new attack surface to these
systems. An ML model is commonly learnt under the assumption that its training data
follow the same statistical distribution that is later observed when the model is used.
While this is an effective assumption to guide the training process and generally allows
ML models to gain robustness against natural variations of inputs, it implicitly neglects
the presence of an adversary. In particular, an adversary can arbitrarily deviate from
this distribution and fool a model with carefully computed inputs; thus, undermining
the model’s integrity [99, 38, 49].

3

1 Introduction

This observation spawned a new field of science about the security and trustwor-
thiness of machine learning, which resulted in a myriad of possible attacks. Besides
integrity attacks, prior work discovered the vulnerability of ML models to attacks
against their confidentiality [105, 52, 67], availability [85, 95, 96], and also new attack
vectors emerged regarding the privacy of user data [74, 4, 26] or fairness of model
predictions [29, 116, 46]. But in this field, ML models were predominantly studied in
isolation, which is an oversimplification compared to practical applications that deploy
models as part of an ML system [9, 90]. Such a deployment might introduce additional
constraints for an attack and can limit the knowledge that an adversary can gather
about the internals of a system. The input and output of an ML component might
not be easily accessible from the outside of the system or are part of complex pre- and
post-processing pipelines. In particular, pre-processing steps are usually not bijective
in structured problem domains, and an attack against an ML model often does not
transfer directly to an attack against the system using that model [82, 84]. For this,
an adversary must also find an input that manipulates the ML model and a suitable
input in the underlying problem domain. Also, real-world adversaries are not bounded
by the magnitude or the type of their modifications, whereas the literature often makes
such assumptions. Finally, and most importantly, the goal of an adversary is typically
not to attack an ML component itself but leverage a vulnerability in such a component
to an attack against the enclosing system. As a consequence, commonly studied threat
models do not sufficiently express the knowledge, capabilities, and goals of practical
adversaries.

In this work, we investigate the security of machine learning from a systems security
perspective. By considering the ML model as part of a system, we can explore the
increased attack surface of practical systems but also analyze how such systems can be
secured.

From a defender’s point of view, it can also be an advantage to consider an ML
model in a larger context. It is challenging to secure generic ML models against all
possible attack vectors — demonstrated by the vast body of literature on attacks [e. g.,
11, 99, 38, 77, 78, 12, 87] and (broken) defenses [e. g., 19, 20, 17, 108, 79]. By considering
the context of the deployment, we can focus our efforts on relevant classes of attacks
and appropriate defenses. For example, when there is no data flow from the input of
the system to an ML component, an attack against the integrity of a model might not
be possible and does not need to be considered. Likewise, if there is no data flow from

4

an ML model outside the system, we might not have to worry about privacy leakage
attacks. Furthermore, knowledge about the problem domain can be used to make a
model more robust for a specific application. This is akin to a white-list approach in
computer security. Rather than defending against all possible inputs, we restrict the
inputs to classes of known inputs.

We start our investigation and study an attack against a practical ML system to
understand how an adversary can leverage a vulnerability of an internal ML component
to an attack against the system itself. As a practical example, we consider systems
for automatic paper-reviewer assignments [23, 81]. Such systems are now regularly
employed in various scientific fields to support the academic reviewing process and help
the program chair of an academic conference or the editor of a journal to find a suitable
match of submissions to a group of reviewers. Internally, these systems rely on machine
learning for topic modeling [13, 28, 48] to extract and represent both reviewers as well
as submissions with representative high-level topic vectors, which are used to measure
their similarity and to facilitate a good assignment. However, by using machine learning,
these systems become vulnerable to manipulations. To demonstrate this, we consider
an adversary that adapts its submission to mislead the topic modeling component and
selects its reviewers. This is challenging since the topic modeling component is used only
internally and is, therefore, not directly exposed by the system. Hence, the adversary
cannot directly modify inputs in the input space or feature space of this component but
only make modifications in the problem space of the system (i. e., the system expects
PDF files as input). Furthermore, even if the adversary has complete control over
the output of the topic modeling component, changing the system’s output (i. e., the
assignment) is not straightforward because of concurring reviewers and submissions.
To address both of these issues, we propose a novel optimization strategy that operates
simultaneously in the feature space of the topic modeling component and the problem
space of the system. To guide the optimization, we use the system’s output as an oracle
for the attack. This allows us to integrate constraints among spaces and effectively craft
adversarial submissions.

Second, we consider the security of an ML system from the perspective of a defender.
ML systems are applied in a specific context, and we can use domain-specific priors
to improve their robustness against attacks. As a practical example, we consider voice
assistants, which use ML to transcribe spoken content from raw audio signals into text.
The internal speech recognition component is vulnerable to hidden commands injected

5

1 Introduction

into inconspicuous audio signals such as news broadcasts, music, or birds twittering.
In particular, an adversary can slightly perturb an audio signal to fool the system
into transcribing arbitrary target transcriptions or mounting a denial of service attack
which cancels out any transcriptions. The perturbations themselves are unobtrusive
and barely noticeable for human listeners [21, 89, 87]. Under a realistic threat model,
such an attack is always possible as practical adversaries must be assumed to have full
control over the input to the system. Hence, in the worst case, the adversary needs
to make more significant changes to the input. This again highlights the mismatch
between adversaries usually studied in the literature (with bounded perturbations) and
real-world attacks. Therefore, rather than preventing the attack in any circumstance,
we focus on making the attack noticeable. In this case—while still viable—the attack
loses most of its malicious potential. The vulnerability in the recognizer stems from
a mismatch between the expectations of a human listener and the inner workings of
the system [49], and our goal is to align these better. First, we use a model of the
human auditory system [50] to identify and filter parts in the input to the system that
are inaudible to humans. Intuitively, these parts should not contribute any information
to the recognizer. They do, however, provide space for an attacker to hide adversarial
noise [118, 89]. Second, speech recognition systems typically expect an audio signal
with a frequency range of 0 − 8000Hz. As the task of the system is the transcription
of spoken content, we can further reduce the attack surface by restricting the audio
signal to frequencies that carry human voice, which are approximately between 300−
5000Hz [72]. By combining both of these insights, we systematically remove hideouts
in the signal for an adversary and force an attack into audible ranges. Our evaluation
shows that this approach is effective, and we find that inputs computed by a strong
adversary are of poor quality and are easily distinguishable from benign audio inputs.

Finally, we take a step back and consider the lifecycle of an ML system. Computer
systems often run for extended periods of time and are continuously updated and
maintained. This also affects internal ML models, which are updated, e. g., with new
training data points. Recall that the goal during training is to generalize structure
from the training set about the problem domain. For an ML model to perform well
on real-world inputs during deployment, this training data must resembles inputs later
observed by the model as closely as possible. For this reason, in many cases, ML
models are trained on data points directly shared by users of a system (e. g., the
speech recognition component of a voice assistant might be trained on recordings from

6

users of the system [88]). The collection and usage of such data is strictly mandated
by regulations like the GDPR [1], CCPA [2], or PIPEDA [3]. Among others, these
regulations govern the right to be forgotten and, in particular, entitle individuals to
self-determine the possession of their private data and also compel a deletion. However,
fulfilling such a deletion request can be problematic when the data is used for training
an internal ML component. ML models are prone to memorization [31, 15] and can
leak information about individual training data points [18, 62]. Consequently, it does
not suffice to delete a data point from the training set, but a model trained on this set
also needs to be updated. This can be done using machine unlearning, which removes
data points from the training set of an ML model after training [14, 40, 110]. However,
a dishonest service provider might not unlearn a data point faithfully to avoid the
computational costs associated with updating a model [14, 40], or they might not be
willing to pay the cost of degradation in model utility [35, 92]. Therefore, our goal is
to make this unlearning verifiable from a user’s perspective. For this, we cannot solely
consider the ML model in isolation but must capture consistency across model updates
and evolving datasets (i. e., we need to consider the history of the system using the
model). This is to prevent a data point from being re-added at a later iteration of a
model. Moreover, the contribution of a data point (towards model parameters) can be
approximated from other entries in a dataset, and model parameters can be identical
when trained with or without a data point [104, 95]. Hence, any approach that verifies
that the influence of an unlearnt data point is absent from the processed parameters
is insufficient. To account for these challenges, we formulate unlearning as a security
problem with a formal framework and propose an algorithmic approach for verification.
In this framework, we instantiate a generic protocol for verifiable unlearning using
methods from verifiable computation (such as SNARKs [42, 93]) and hash chains. We
prove the security of this protocol based on cryptographic assumptions and practically
implement and evaluate the main building blocks for different unlearning mechanisms
from the literature.

Thesis contributions. In summary, we make the following key contributions:

• Feature-problem-space attacks. We study the increased attack surface of ML sys-
tems inherited by internal ML components. We consider a practical scenario and
construct an attack against a system for automatic paper-reviewer assignments.

7

1 Introduction

This attack is based on a novel optimization strategy that operates simultane-
ously in the ML component’s feature space and the system’s problem space.

• Domain-specific priors. We discuss a principled approach to increase the robust-
ness of ML components within a system by integrating application-specific priors.
As a practical example, we consider the task of automatic speech recognition. We
utilize domain-specific knowledge to better align speech recognition systems with
human expectations. This augmentation forces an adversary into audible ranges.

• Security beyond the model. Verifiable machine unlearning cannot be solved by
naive one-shot approaches. Moreover, it requires proving that the unlearning
algorithm was executed; otherwise, the user will not know that their point was
indeed deleted. To capture this, we propose an algorithmic approach and a formal
security definition. Under this definition, we construct a generic instantiation and
prove its security.

Structure of thesis. This thesis is divided into two parts. This first part serves as
an introduction to the security of ML systems. The upcoming Chapter 2 introduces the
necessary background on machine learning and its properties in adversarial environ-
ments. In Chapter 3, we start by introducing ML systems and discuss salient concepts
of how the inclusion of ML components affects the security of the system. Our discus-
sion then revolves around three case studies — each highlighting a significant concept
of systems-level attacks and defenses. Finally, we conclude our introduction in Chapter
4 and discuss potential directions for future work. The publications underpinning the
first part are provided subsequently in the second part in appendices A to C.

8

Background

This thesis investigates the security of systems that internally rely on machine learning
components. As a basis for this, we require background on machine learning and its
properties in adversarial environments, which we want to introduce in the following.
We start with a short overview of machine learning, focusing on supervised models
that are widely used in practice. Based on this, we continue to discuss attack vectors
enabled by the underlying learning paradigm. For this discussion, we will focus on
adversarial examples as an example of how we can study the worst-case performance
of a model. This will lead us to the notion of adversarial robustness and limitations of
current countermeasures. Finally, we briefly introduce different threat models used in
the literature.

2.1 Machine Learning

A machine learning system is not programmed explicitly but learnt from a set of data
points or dataset. Many different learning paradigms and problem classes exist, but
fundamental principles may be best illustrated with supervised machine learning to
solve regression and classification tasks. In supervised machine learning, the goal is to
learn a mapping between a space of inputs and a space of outputs based on labeled
training examples. Other notable learning paradigms include unsupervised learning,
when the training data is not labeled, and reinforcement learning where the goal is to
learn an agent’s policy interacting with its environment.

9

2 Background

Supervised machine learning. Supervised machine learning is the process of learn-
ing a parameterized function mΘ (often called a model) that can predict an output
(from the space of outputs Y) given an input (from the space of inputs X):

mΘ : X → Y .

For a regression problem we want to predict a real-valued scalar y ∈ R given an input
vector x ∈ Rn. This can be done with a linear regression model where mΘ is of the
form

ŷ = w1 · x+ w0,

with parameters Θ = (w1, w0) ∈ Rn×R. In a classification task, the output or prediction
would take a discrete value ŷ ∈ [1, . . . , c] (i. e., one of c classes) or might describe a
probability distribution over all classes. For example, in binary classification, we can
use a logistic regression model

ŷ = σ(w1 · x+ w0),

that can predict the probability of x belonging to one of two classes. The difference to
linear regression is the sigmoid function σ defined as

σ(t) =
1

1 + e−t
,

which projects the output of the model between [0, 1]. Parameters of the model need
to be carefully chosen such that the output forms the required probability distribution.

Deep neural networks. Both linear and logistic regression are fundamentally lim-
ited as they can only express linear relationships between the input and the output.
Therefore, more complex models, such as Deep Neural Networks (DNNs), are often
considered. DNNs are networks of neurons arranged in layers inspired by biological
neural networks. The first layer is the input layer, followed by several hidden layers,
and finally, the output layer. In the case of a fully-connected network with K layer as
depicted in Figure 2.1, the k-th layer has sk neurons which are parametrized by weights
w

(k)
i,j for k > 1 and describe the pairwise connection strength between the i-th neuron in

layer k−1 and the j-th neuron in layer k. The model parameters follow as the set of all
weights, i. e., Θ = {w(k)

i,j } with i, j, k as defined before. The output of the model is com-
puted from left to right. The input layer contains one neuron for each input value, and

10

2.1 Machine Learning

Figure 2.1: Deep neural network. Neural network with one hidden layer and two input
and output neurons each. This is an example of a full-connected neural network as each
neuron in a layer depends on all neurons of the previous layer.

in this first layer, each neuron outputs its input value, i. e., a(0)j = xj ∀j ∈ {1, · · · , s1}.
In each following layer k, the j-th neuron computes

â
(k)
j = w

(k)
0,j +

sk−1∑
i=1

a
(k−1)
i · w(k)

i,j ,

which is fed into a non-linear activation function such as the sigmoid function σ. This
step is crucial to introduce non-linearities in the learnt mapping. The output or acti-
vation value of a neuron follows as a

(k)
j = σ(â

(k)
j) . Finally, the outputs of all neurons

in the final layer are outputted, i. e., yj = a
(K)
j ∀j ∈ {1, · · · , sK}.

Fully-connected networks are built on the intuition that each layer builds on the
computation of previous layers, which allows them to represent complex relationships.
They serves as a foundation for many specialized architectures such as Convolutional
Neural Networks (CNNs) [60], Recurrent Neural Networks [86], or Transformer Mod-
els [109]. In general, there is no universally optimal architecture [111], and the choice
depends on the nature and complexity of the mapping that needs to be learnt.

Training an ML model. Once a model mΘ is selected, we need to find suitable
parameters Θ. The training aims to learn these parameters from a finite dataset D :=

{d = (x, y) ∼ D} with D being the true data distribution. To assess a particular set
of parameters, we use a loss function l : Y × Y → R+, mapping the models predicted
and the true output to a positive number that represents the quality of the model’s

11

2 Background

prediction. A common choice for regression problems is to use the mean squared error
loss, while the cross-entropy loss is often used for classification problems.

Regardless of the specific loss function, the goal is to find a model mΘ that minimizes
the following risk:

R(mΘ) := E(x,y)∼D[l(mΘ(x, y))].

In other words, we are looking for parameters Θ where the expectation over the loss
is minimal; thus, the model makes the least mistakes. Unfortunately, the true data
distribution D is usually unknown. Therefore, in practice, we approximate this quantity
with a finite dataset D which leads to the empirical risk:

R̂(mΘ, D) :=
1

|D|
∑

(x,y)∈D

l(mΘ(x, y)).

Equipped with this definition, we can now proceed to train model parameters Θ.
This can be done with Stochastic Gradient Descent (SGD). The idea behind SGD is
simple: We start with randomly initialized parameters Θ and iteratively improve upon
them. In each step, we consider a data sample (x, y) ∈ D. For this data point, we first
compute the model’s prediction ŷ = mΘ(x) and loss value l(ŷ, y). We then compute
the derivative from this loss value with regard to the model’s parameters Θ, which can
be summarized by the gradient vector ∇Θl(mΘ(x, y) (i. e., each entry of the gradient
corresponds to the derivative of one entry in Θ). To reduce the loss of the model on
data point x, we subtract the gradient from the current model parameters:

Θ := Θ− η · ∇Θl(mΘ(x, y)).

To control the learning rate in each step, a scalar value η is used. Multiple passes
(called epochs) are often repeated through the dataset until the risk is sufficiently low.
Note that for this assessment, we cannot use the same dataset as model parameters
are prone to overfitting to a specific data set. Instead, we use a test set sampled from
the same underlying data distribution D, which is used to estimate the true risk. The
full process of training can be described as

Θ := Θinitial +
∑
e∈[E]

∑
d∈D

Λe,d,

with E being the number of epochs and Λe,d the update on the model’s parameter from
data point d in epoch e. In practice, this approach is often extended to batches of data
points to reduce each update’s variance, and regularization terms are added [37].

12

2.2 Adversarial Machine Learning

2.2 Adversarial Machine Learning

The paradigm of learning from data introduces a new attack surface as learnt models
might contain blind spots (e. g., when there is not enough support in the data for
certain edge cases), or an adversary might exploit the very nature of training to embed
backdoors in the learnt model. In general, we can divide attacks into the three classical
security goals: confidentiality [105, 52, 67], integrity [99, 38, 49], and availability [85,
95, 96] attacks but also new attack vectors emerge, such as attacks against a model’s
privacy [74, 4, 26] or fairness of model predictions [29, 116, 46].

Adversarial examples. Most prominent are integrity attacks during inference, which
we want to discuss in the following for the setting of the classification task. Here, the
adversary computes an input that fools a model into outputting a false prediction. This
modified input is referred to as an adversarial example. The very existence of such in-
puts is not surprising, as every function can be manipulated when controlling the input.
What is special about adversarial examples, on the other hand, is their effectiveness:
minor modifications of an input often already suffice to have full control over a model’s
output which highlights the brittleness of current ML models in worst-case scenarios.

Formally, our goal is to find a vector δ that perturbs an input x such that mΘ(x) 6=
mΘ(x + δ). This can be done with the same approach as used during training, but
instead of minimizing the loss, we maximize it for a specific input point. To control
the modification δ, we define a perturbation set ∆ of allowed modifications. A common
choice for ∆ is, for example, to consider an Lp-ball around the input, e. g., ∆ := {δ :

||δ||∞ ≤ ϵ} for small ϵ with ||t||∞ = max
i
|ti|. The attack objective can then be described

by:

maximize
δ∈∆

l(mΘ(x+ δ), y).

We can further extend this strategy to targeted attacks where the goal is not only a
misclassification but also to choose the target label ytarget:

maximize
δ∈∆

l(mΘ(x+ δ), y)− l(mΘ(x+ δ), ytarget).

This optimization simultaneously tries to maximize the distance to the correct label
while minimizing the distance to the target label.

13

2 Background

Adversarial robustness. Fundamentally, these attacks result from the way a model
is trained. In particular, the goal during training is to minimize the (empirical) risk
as introduced above and a model only gains robustness against naturally occurring
perturbations (e. g., different lighting conditions for an image classifier). Adversarial
examples, on the other hand, are worst-case perturbations specifically computed to
move input samples across learnt decision boundaries.

As a consequence, adversarial examples can be considered as out-of-distribution sam-
ples from the underlying data distribution. Hence, to improve resilience against such
outliers, a possible approach is to detect malicious inputs prior to feeding them into
the model. Indeed, Grosse et al. [41] showed a significant statistical difference between
natural and adversarial inputs. However, once an adversary is aware of a particular
detection mechanism, it proved very difficult in practice to prevent the adversary from
factoring this into the computation and bypassing the filter [19].

As an alternative approach to detection, it is possible to make the model itself more
robust and modify the training goal to take adversarial perturbations into account
explicitly. This can be formalized with the adversarial risk [66]:

Radv(mΘ) = E(x,y)∼D[max
δ∈∆

l(mΘ(x+ δ, y))],

and analogously the empirical adversarial risk

R̂adv(mΘ, D) =
1

|D|
∑

(x,y)∈D

max
δ∈∆

l(mΘ(x+ δ, y)).

In this definition, we obtain a model that gains robustness against all possible per-
turbations from a perturbation set ∆. This optimization criterium is, for example,
implemented as adversarial training [38, 66, 113] and was shown to successfully im-
prove the robustness of the learned model. Interestingly, robust models are often less
accurate than their normally trained counterparts as these need to generalize better
on so-called robust features. On the other hand, a model can use any available signal
in the data during standard training [49, 106].

Threat model. To systematically study the security of ML models in adversarial
environments, we assume a threat model that summarizes the capabilities, knowledge,
and goals of an adversary:

14

2.2 Adversarial Machine Learning

• Goal. The goal describes the objective of an attack. As discussed earlier, for ML
models, an attacker might undermine a model’s confidentiality, integrity, avail-
ability, privacy, or fairness. The goal also reflects whether an attack is untargeted
or targeted.

• Knowledge. Adversaries can be distinguished by the amount of knowledge they
have on the target model. For example, whether an adversary has access to a
model’s parameters Θ or its training data D. Depending on this, adversaries
are typically classified as white-box with full access, black-box with no access, or
grey-box for everything between.

• Capabilities. With the capabilities of an adversary, we can describe its abilities to
interact with the target. For example, which parts an adversary can manipulate
(e. g., inputs to the trained model or the training data) or the magnitudes of
modifications (i. e., the perturbation set we assume).

Explicitly defining the threat model allows to make specific claims about the security
of a model with respect to the assumed adversary. For example, with adversarial train-
ing, a model gains robustness to adversaries restricted by their capabilities defined with
the perturbation set. Importantly, this generally does not allow claims for adversaries
not covered by the threat model. Therefore, it is critical that the threat model matches
real-world adversaries as closely as possible. Unfortunately, prior work often assumes
threat models that are too restrictive or do not align well with the goals of real-world
adversaries. In the remaining work, we will investigate this observation in detail and
consider the security of machine learning from a practical perspective.

15

Security of ML Systems

We proceed with our discussion about the security of ML systems. These systems
internally rely on machine learning components as part of their computation pipeline.
Figure 2 depicts a high-level overview of such a system. In general, ML systems are the
common way to deploy ML models in practice since underlying models can usually not
be used in isolation [9, 90]. For example, an ML model used for detecting pedestrians
might be embedded in a larger system of an autonomous vehicle [71]. This system might
record a camera feed and uses the ML component only to classify the camera data. An
antivirus program might use an ML component as part of a triaging pipeline [98, 54, 34].
Here the system’s output might only be the final result: whether the input is benign
or malicious. Smartphones use machine learning for face or fingerprint recognition to
authenticate their users and many more [102, 39, 8].

By using machine learning, these systems inherit the attack surface of internal ML
models, which makes them vulnerable to attacks against these. But, extending an
attack from an ML model to an attack against the system is more complex. The
output of a system might not be the output of the ML component; likewise, an input
can be pre-processed by a larger pipeline. Hence, an adversary might only have limited
feedback from the output of the ML component or only limited control over the input.
Moreover, the functionality of the system itself could be unknown. Systems can be
composed of several components with complex information flows between them. Most
critically, however, the goal of an adversary is usually not to attack an ML model
but leverage such an attack against the enclosing system. Consequently, compared to

17

3 Security of ML Systems

ML
Input

System
Input

System
Output

System
Input

System
Output

ML
Output

Non-ML
Functionality

ML
Component

ML
Input

ML
Output

Training
Data

Figure 3.1: ML System. An ML system uses machine learning internally in a subcomponent.
This component is not programmed explicitly but learnt from a set of training data points.
As the system also uses non-ML functionality, inputs to the ML this component might differ
to the input to the overall system and the system output might differ from the output of the
ML component.

attacking an ML model in isolation, adversaries against ML systems differ in their
capabilities, knowledge, and goals.

In the following, we want to categorize and discuss such differences in more detail
and when the system perspective might even be an advantage to fend off an attack.
Subsequently, we consider three different case studies to highlight salient concepts
further.

Additional constraints. ML models expect inputs from their input space. In an ML
system, we therefore need to convert the inputs from the system prior to feeding it to
an ML component. This conversion is facilitated with a feature extractor that projects
inputs from a systems problem space into a vector of a models feature space (i. e., its
input space). Feature extractors can be very simple (e. g., taking an image’s grey scale
pixel values) but can become very complex (e. g., parsing a malware executable file into
high-level features).

Most prior works on the robustness of ML models focus on attacking models in their
feature space. The conversion from the problem space into the feature space, however,
needs to be considered for an attack against the system. Unfortunately, the mapping
between spaces is usually not bijective as multiple inputs might map to the same feature
vector, and not every feature vector can be realized in the problem space [82, 84]. In
Section 3.1, we analyze in detail how an adversary can integrate such constraints into an
attack that simultaneously considers both the feature space and problem space. This

18

case study considers a real ML system used for paper-reviewer assignments during
the academic reviewing process. Interestingly, the mapping can also be used as an
attack vector. For example, in image-scaling attacks, an adversary can manipulate an
image to change its appearance after being downscaled during the pre-processing of an
image classifier [83], or unintelligible commands can be hidden in an audio signal and
uncovered by the signal processing of a speech recognition system [5].

From the side of a defender, it can be beneficial to consider the entire computation
pipeline and not only the feature space to improve the robustness of the ML component.
By considering the problem space, it is possible to add constraints on the feature ex-
traction. This can be in the form of domain-specific knowledge, e. g., we add restrictions
to the input space of the ML model to reduce the attack surface of a model. We inves-
tigate this in Section 3.2 and look at the robustness of automatic speech recognition.
We consider a model of the human auditory system to restrict the feature extraction
from audio signals to ranges that are audible for human listeners. We demonstrate that
this forces an adversary into audible ranges, significantly reducing the attack surface.

Information flow. An implicit assumption of feature-space attacks is that an ad-
versary has complete control over the input and output of the targeted model. The
problem-feature-space conversion is one example where this might not hold when con-
sidering a model in a larger context. Furthermore, from a system’s point of view, it
might be possible that there is no connection between a system’s and the model’s input
(e. g., when an ML component is solely used internally [90]). This allows a defender to
rule out complete classes of attacks by tracking the information flow between compo-
nents. This is especially important as defending the ML model against every possible
attack is generally infeasible, and countermeasures are expensive to deploy [97, 25, 107].

Lifecycle of a system. Prior work often implicitly assumes static models trained
once on a fixed training set. However, this assumption does not hold in practice where
the underlying data distribution might shift, and model’s need to be continuously
updated. Consider, for instance, an ML system for malware detection where the internal
model needs to keep up with novel attack vectors. On the one hand, this can add
uncertainty to an attack [94] since a particular model variant might be unknown to
the adversary. On the other hand, this can also further increase the attack surface. In
particular, an ML model can “forget” about old data points, known as catastrophic

19

3 Security of ML Systems

forgetting [55], and thus become less confident and more vulnerable to inputs from this
region.

Furthermore, a service provider might collect data during the runtime of a system.
Adding this data to the training set of an ML model can address distribution shifts and
generally improve the alignment between the training data and data observed during
runtime. Section 3.3 considers the scenario where a service provider might be legally
compelled to remove such data samples. Specifically, we focus on the case that data
points were used for training an ML model, and a service provider is required to update
the ML model to remove any influence of this data. To capture the consistency of model
updates and evolving datasets, we must also consider a system’s history.

3.1 Feature-Problem-Space Attacks

Equipped with this overview, we now want to focus our attention on three concrete
case studies for attacking and defending ML systems. Recall that an adversary against
an ML system needs to consider the whole processing pipeline, and an attack against
an internal ML model is just one piece of a successful attack. In the first case study, we
therefore want to understand how we can practically leverage a vulnerability within an
ML subcomponent for an attack against the enclosing system. As an example, we will
consider assignment systems as they are now increasingly used during the academic
reviewing process. They are an excellent example since they internally rely on machine
learning as a subcomponent and work on PDF files requiring non-trivial pre-processing.

Paper-reviewer assignments. The task of the assignment system is to match a
set of reviewers R with a set of submissions S in a way to optimize the similarity
between reviewer and submissions while achieving a balanced assignment (i. e., each
submission should be assigned to Lx reviewers and each reviewer should review at most
Lr submissions). These systems use machine learning to distill the expertise of reviewer
and the contents of submissions to facilitate a good match. For this, each reviewer
r ∈ R is represented by a set of selected publications Ar. With these archives and the
set of submissions, the assignment is roughly divided into three steps [81, 23]:

• Text pre-processing. Assignment systems typically work on PDF documents
as their inputs. The first step is to convert such a PDF document z from the
problem space Z of a system into a vector representation x from the feature

20

3.1 Feature-Problem-Space Attacks

space F amenable for further computations. Therefore, a text extractor (such
as pdftotext) is used to extract text from the PDF file z. The extracted text
is then (1) tokenized into individual words, (2) numbers or stop words that do
not carry much meaning (e. g., the, a, . . .) are removed, and (3) only word stems
are considered (e. g., attacker, attack, attacking, . . . are mapped to the same
stem attack). This tokenization and normalizations steps are summarized by a
preprocessor function φ. After that, the normalized words are converted into
a vector representation using a feature extractor ϕ by counting the number of
occurrences of words from a vocabulary V (i. e., a bag-of-words). The result of
this pre-processing is a vector x ∈ N|V|.

• Topic modeling. The key to the assignment is the automatic extraction of high-
level topics from these word vectors. Formally, a word vector x is mapped to a
low-dimensional topic vector θx from a topic space T :

Γ: N|V| −→ T , x 7→ θx.

A common instantiation for Γ are unsupervised topic modeling techniques such
as the Latent Dirichlet Allocation (LDA) [48, 13]. LDA assumes a generative
probabilistic process that creates a set of documents representing each document
by a random mixture over a set of latent topics. Training a LDA model on a corpus
of documents allows one to discover this topic space automatically. Moreover,
we can use the model to infer the implicit topic vector from a new document.
Intuitively, similar documents are “close” in this topic space and, thus, allow us
to measure their similarity using this representation.

• Paper-reviewer assignment. Using the extracted topics, a similarity score br,x

between a reviewer r ∈ R and a submission x ∈ S is computed by taking the
dot-product of their topic vectors

br,x := Γ(Ar) · Γ(x)⊤.

21

3 Security of ML Systems

This score is high when topic vectors share many topics and low otherwise. Based
on the pairwise similarity, we can then compute a ranking of reviewers for each
submission and formulate the final assignment A as

maximize
A

∑
r

∑
x

br,x · Ar,x

subject to Ar,x ∈ {0, 1} ∀r,x∑
r

Ar,x ≤ Lx ∀x and
∑
x

Ar,x ≤ Lr ∀r,

with load constraints Lx and Lr as defined above [101].

Adversarial papers. We consider an adversary that, given a submission z, aims to
find a submission z′ which gets assigned a targeted set of reviewers in A. Therefore,
we assume that the adversary modifies z to manipulate the topic model and move
the submissions similarity closer to selected and farer from rejected reviewer, which
subverts assignment A. To highlight the difference to a classical attack against the
ML model itself, let us further assume that the adversary has full control over the
topic vector (i. e., they can attack the ML model in its feature space). In this case, the
adversary still needs to overcome two important challenges: First, (1) they need to find
a topic vector that results in the targeted assignment (i. e., manipulate the output of
the system), and second, (2) find an input in the problem space of the system (i. e.,
a PDF file) that is mapped to the corresponding feature vector inputted to the topic
model. Both steps are non-trivial as they depend on the relationship between different
reviewers on the final assignment and the mapping from the input to the system and
extracted word counts. To address this, we consider a hybrid optimization strategy
that uses the system’s output as guidance for the attack and alternates between the
feature space F of the topic model and the problem space Z of the system as depicted
in Figure 3.2. In the following, we describe the attack individually in feature space
respectively problem space and then introduce the combined optimization problem.

Feature-space attack. Let x be the extracted word counts from submission z. In the
feature space, we want to manipulate reviewers Rx assigned to z and, more specifically,
select and reject arbitrary reviewers from Rx. Formally, we define two sets, Rsel and

22

3.1 Feature-Problem-Space Attacks

ZProblem Space FFeature Space

A
ut
om

at
ic
Pa

pe
r-
R
ev
ie
w
er

A
ss
ig
nm

en
tS

ys
te
m

Ranking

PDF

z

Submission

Adversarial
Submission

1

2

3 7

4

5

6

z'

x

x'

Side Effect

LaTeX

Figure 3.2: Feature-problem-space attack. Given an initial submission z, the goal is to
find a submission z′ that gets assigned the target reviewers. In the first step ¶, the submission
is converted into a word vector x in feature space. The feature-space attack modifies this
vector to change assigned reviewers (step · and ¸). Using the problem-space attack, the
modifications are projected back into the problem space (step ¹). Due to side effects and
limitations of transformations, the submission shifts in problem space. Therfore, the attack
is repeated from this new starting position until it is successful (º–¼).

Rrej . Our goal is to find a modification vector δ ∈ F such that the modified submission
vector x′ = x+ δ fulfills

r ∈ Rsel ⇒ r ∈ Rx′ , and

r ∈ Rrej ⇒ r /∈ Rx′ , ∀r ∈ R.
(3.1)

To restrict the amount of modifications, we further require ||δ||1 ≤ Lmax
1 and ||δ||∞ ≤

Lmax
∞ . The former allows to restrict the absolute number of modifications to the sub-

mission, and the latter prevents individual words from being added or removed too
often, which might raise suspicion. Based on Equation 3.1, an adversary needs to make
changes in the latent topic space defined by the underlying topic model. This is diffi-
cult as topic vectors are computed as an expensive and, more importantly, probabilistic
simulation procedure. Thus, typical gradient-style attacks are not applicable. Further-
more, Zhou et al. [119] showed that manipulating—when formulated as a combinatorial
problem—is NP-hard.

To address this, a common approach would be to replace the inference procedure
with an efficient approximation such as a neural network [47, 117]. However, such ap-
proximations unavoidably introduce noise in the inferred topic vectors [119]. Critical, in
our setting, submissions need to be maneuvered very carefully in the topic space. Con-

23

3 Security of ML Systems

sider, for example, the case with two reviewers, r1 and r2, that share most topics (i.e.,
Γ(Ar1) ≈ Γ(Ar2)). Increasing the similarity between r1 and the submission inevitably
also increases the similarity to r2. Factoring this in requires very precise estimates of
the topic vectors.

For this reason, we use a different approach and rely on a stochastic beam search
guided directly by the output of the topic model. This allows us to work on the exact
topic vectors and efficiently navigate the submission through the topic space. In each
step of the search, we create a set of candidate submissions by adding and removing
words from the feature vector. These candidates get rated using the ranking outputted
by the assignment system, and the search is continued with the top candidates. This
allows us to integrate the target assignment into the optimization objective, and the
result are modifications δ such that x′ = x+ δ fulfills Equation 3.1.

Problem-space attack. In the second part of the attack, modifications δ need to be real-
ized in the problem space. Therefore, we modify the PDF file to add and remove words
from the extracted feature vector. For this, we define problem-space transformations

ω : Z → Z , z 7→ z′,

that allow introducing modifications to the extracted word counts x. We consider three
different classes of transformations: format-level transformations that hide modifica-
tions directly in the PDF format, encoding-level transformations that exploit the text
encoding (such as the substitution of characters), and text-level transformers that only
work on the visible text (e. g., we include paragraphs of text sampled from a language
model or replace words with a synonym).

In general, format-level transformations are the most capable but—once detected—
are typically not deniable. In contrast, text-level transformations only perform changes
to the visible text and can thus be plausibly deniable. However, as these transfor-
mations are visible, we need to introduce an additional attack budget that trades off
conspicuousness with the ability to introduce modifications. For example, it might be
suspicious if too many spelling mistakes are added. To understand if resulting submis-
sions remain unobtrusive for a given budget, we perform a user study (cf. Appendix
A). In this study, we observe that human reviewers generally struggle to differentiate
between naturally occurring noise in the submission (e. g., a spelling mistake or redun-
dant references) and the modifications introduced by our transformations. The total
detection precision of 33% further underlines this with a recall of only 8%.

24

3.2 Domain-Specific Priors

Using the transformations, we can define a chain Ω = ωk◦· · ·◦ω2◦ω1 that successively
transform the targeted submission into an adversarial paper. We require that this trans-
formations preserve the semantics and plausibility such that the submission remains
meaningful and modifications remain inconspicuous. We summarize these constraints
as Υ and write Ω(z) |= Υ if a chain of transformations Ω fulfills these constraints.

Problem-feature-space attack. Combining both constraints from the feature space and
the problem space, we arrive at the following optimization problem:

r ∈ Rsel ⇒ r ∈ Rx′ , and

r ∈ Rrej ⇒ r /∈ Rx′ , ∀r ∈ R

subject to ||δ||1 ≤ Lmax
1 and ||δ||∞ ≤ Lmax

∞ ,

Ω(z) |= Υ

(3.2)

with x = ϕ ◦ ρ(z), x′ = ϕ ◦ ρ(Ω(z)), and δ = (x′ − x). We design a novel optimization
strategy alternating between the problem space in the feature space attack. Figure 3.2,
depicts an overview of this strategy. The adversary starts the attack by converting the
original submission into the feature space of the topic model (step ¶). Subsequently,
the feature-space attack computes a modification vector (step · and ¸). Using the
problem-space attack, these modifications are mapped back into the problem-space
(step ¹). Due to side effects and limitations of transformation, the submission un-
avoidably shifts in the discrete problem space. Therefore, we continue the search from
this new position until the attack is successful (step º–¼). The full attack is described
in Appendix A. Our analysis shows that it is effective to subvert the assignment of an
automatic system.

3.2 Domain-Specific Priors

In the previous case study, we discussed a principled approach to integrate problem-
space constraints into an attack against ML systems. Now, we want to switch sides and
investigate how to use information about the problem space to make a system more
robust. As a practical example for this investigation, we focus on voice assistants. They
enjoy increasing popularity and are integrated as personal assistants into our smart-
phones, cars, or as stand-alone devices at home. Voice assistants continuously listen in
their environment for spoken commands to perform different tasks such as controlling

25

3 Security of ML Systems

music, sending personal messages, or as the control center of a smart home. Internally,
they use ML to transcribe spoken content into text, interpreted as commands.

Our particular interest is in the robustness of this speech recognition component,
which we want to improve by embedding domain-specific knowledge about speech.
Speech recognition is an ideal example because the properties and limitations of the
human auditory system are very well studied. In practice, there are different architec-
tures of speech recognition pipelines. We focus on hybrid architectures deployed, for
example, in Amazon Alexa [89] or Sonos Voice Assistant [7]. In this case, the speech
recognition component consists of three parts:

• Feature extraction. The input to the speech recognition component is a raw
audio wave. This signal is pre-processed into a high-level feature representation in
the first step. Therefore, the input waveform is divided into overlapping frames,
and each frame is transformed with a Discrete Fourier Transform (DFT). Fea-
tures are then given, e. g., as log-scaled magnitudes of the DFT-transformed
signal.

• Acoustic model DNN. In the next step, a deep neural network predicts the
probabilities for distinct speech sounds (i.e., phones) in each frame. The phonetic
description, together with their context, are described by a language model. Thus,
the DNN outputs the most likely state in this language model rather than directly
predicting phones.

• Language model. Finally, given all outputs from the neural network, the lan-
guage model is used to decode the most probable transcription. For this purpose,
dynamic programming algorithms (e. g., Viterbi decoding [32]) are used to find
the most likely path in the language model.

Hidden commands. In a voice assistant, the speech recognition component is di-
rectly exposed to an adversary as the component works on the raw signal. This makes
voice assistants vulnerable to audio adversarial examples computed against this com-
ponent. An adversary can inject hidden commands into an audio signal, which are
inaudible for human listeners but let the speech recognition model hallucinate arbi-
trary transcriptions. For example, an adversary can use unsuspicious signals such as
music or birds twittering and add slight noise to this signal. The modified signal sounds

26

3.2 Domain-Specific Priors

benign for humans, but the system transcribes an adversary-chosen target text with
high confidence [21, 89, 87].

Alignment from human and system. Such attacks with audio adversarial exam-
ples are difficult to fend off. In practical scenarios, we must assume that an adversary
has full control over the input. Consequently, an adversary can always succeed; in the
worst case, they have to change the complete input. However, at a certain level of mod-
ifications, an attack becomes noticeable, diminishing its malicious potential. Therefore,
we want to look at audio adversarial examples from a different perspective: When we
accept that adversarial examples exist, what else can we do? The main problem with
current attacks is that they can be carried out inconspicuously, pointing at the mis-
match between the inner workings of the system and the human auditory system. To
bridge this gap, our goal is to align the system with the auditory system better. In
other words, we want to make the attack audible.

Psychoacoustics. We base our construction on psychophysics, and, in particular,
we are interested in the subfield of psychoacoustics, which allows us to describe the
limitations of the human auditory system [120]. This allows to identify and remove
ranges of the audio signal which are inaudible for humans and thus should not carrier
relevant information for the transcription. Furthermore, the task of the speech recog-
nition system is to transcribe spoken content. Thus, we can restrict the bandwidth of
the input to those frequencies that carry human voice. More formally, we augment the
speech recognition pipeline by adding two filtering steps:

Psychoacoustic filtering. For our construction, we use the psychoacoustic hearing thresh-
olds from the MPEG-1 psychoacoustic model [50]. These thresholds define how de-
pendencies between certain frequencies mask other audio signal parts. Intuitively, these
parts of the signal should not contribute any information to the recognizer. They do,
however, provide space for an attacker to hide adversarial noise. Based on this, we
derive a mask to remove inaudible parts of the audio. We compare the absolute values
of the complex valued Short-Time Fourier Transform (STFT) representation of the
audio signal S with the hearing thresholds H and define a mask via

27

3 Security of ML Systems

Raw Audio Wave Psychoacoustic
Filtering TranscriptionSpeech

Recognition

I SOLEMNLY
SWEAR I AM UP

TO NO GOOD

Band-Pass
Filtering

Figure 3.3: Augmented system. To augment the speech recognition component, we use
psychoacoustic filtering to remove range that are inaudible for human listeners. Moreover, we
use a band-pass filter to restrict the audio signal to those frequencies used by human voice.

M(i, j) =

0 if S(i, j) ≤ H(i, j) + Φ

1 else
, (3.3)

with i = 0, . . . , I − 1 and j = 0, . . . , J − 1. We use the parameter Φ to control the
effect of the hearing thresholds. For Φ = 0, we use the hearing thresholds exactly. For
values Φ > 0, more aggressive filtering is applied, and for smaller values, we retain
more from the original signal. We then multiply all values of the signal S with the
mask M

T = S�M, (3.4)

to obtain the filtered signal T.

Band-pass filter. Secondly, the human voice frequency range is limited to a band of
approx. 300 − 5000Hz, we also add a band-pass filter to reduce the attack surface
further. This can be described as

T(i, j) = 0 ∀ fmax < j < fmin, (3.5)

where fmax and fmin describe the lower and the upper cut-off frequencies of the band-
pass.

28

3.2 Domain-Specific Priors

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(a) Unmodified Signal

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(b) Attack Baseline System

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(c) Attack Augmented System (Φ = 12)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−70

−60

−50

−40

−30

(d) Hearing Thresholds

Figure 3.4: Spectrograms of adversarial examples. Figure 3.4a shows the unmodified
signal, Figure 3.4b depicts the baseline with an adversarial example computed against the
unmodified speech recognition component, Figure 3.4c an adversarial example computed with
the adaptive attack against the augmented component, and Figure 3.4d shows the computed
hearing thresholds for the adversarial example.

Results. Based on these principles, we augment a system as depicted in Figure 3.3.
In Appendix B, we describe this construction in detail. The required amount of mod-
ifications that an adversary needs to introduce depends on various parameters. For
example, if only a few words need to be changed to achieve the targeted transcription,
the attack is generally easier. Also, the choice of the target utterance itself is essential.
If the corresponding signal does not include spoken content, it is much easier to force
the recognizer into an output [89] since the attack does not need to “remove” the actual
content from the transcription first.

In our experiments, we therefore consider three different types of audio signals (i. e.,
birds, music, and speech samples). Moreover, we chose the target transcription such
that it is both efficient and effective to introduce in order to decouple its influence on
the attack; that is, we are interested in “easy” attacks to understand better understand
the effect of the augmentations rather than the effect of more complex target sentences.

We observe that (1) restricting the input to those frequencies that carry human
voice can help the system to improve transcriptions (indicating that indeed unnecessary

29

3 Security of ML Systems

information is included) and (2) by removing parts of the input that are inaudible for
human we can successfully force an adversary into audible ranges which makes the
attack clearly perceivable. Figure 3.4 shows the power spectra between the unmodified
signal and an attack against the baseline and augmented systems. We observe that
adversarial examples computed against the augmented system are of poor quality and
are easily distinguishable from benign audio and adversarial examples constructed for
the baseline system.

3.3 Security Beyond the Model

For the last case study, we want to take a step back and look at the lifecycle of an
ML system. In many cases, learnt components are continuously updated, for example,
to improve their performance or to address a distribution shift between the training
data and currently observed data [44]. Recall that ML models are trained with the
assumption that statistical properties of data points used during training closely re-
semble the properties of data points the models sees during deployment. To achieve
this, in many cases, service providers collect and use data shared from users of the
system. For example, a service provider might store the interactions from a user with a
system and use this data later as part of an ML model’s training data (e. g., recordings
from a voice assistant [88]).

Machine unlearning. In practice, the collection and usage of this data is strictly
mandated [1, 2, 3]. In particular, the right to be forgotten entitles individuals to self-
determine the possession of their private data and also compel a deletion. However,
fulfilling such a deletion request can be problematic when the data is used for training
an ML model as these can leak information about their training data points [18, 62].
Consequently, deleting a data point from the training set does not suffice, but any
model trained on this set needs to be updated as well.

This can be done with machine unlearning, which allows to remove training data
points from an ML model after training. Recall that a trained model can be described
as a sum over individual model updates (cf. Section 2.1). To remove a data point d∗

from model parameters Θ, we are looking for a model with parameters Θ′ defined as
follows:

30

3.3 Security Beyond the Model

Θ′ := Θinitial +
∑
e∈[E]

∑
d∈D\{d∗}

Λe,d.

The canonical approach to achieve this is re-training the model without the data
point d∗. Albeit computationally expensive, it has the advantage that the contribution
of a data point is completely removed from the parameters. In general, unlearning can
broadly be classified into two categories: exact unlearning (such as re-training), where
there are guarantees that the datas contribution is entirely removed [14, 16, 114, 75],
and approximate unlearning, where the guarantees tolerate some error [43, 24, 103, 10,
91, 36, 40, 110] which are often more efficient.

Verifiable machine unlearning. Regardless of the unlearning technique, verifying
that a data point is unlearnt is difficult from the users perspective. A naïve solution
might be to provide users access to the model’s parameters and ask them to locally run
influence techniques [56] to understand if their data point contributed to the model.
However, even under this strong assumption (i. e., granting access users to the param-
eters), such an approach does not suffice. Recent works demonstrate that a models
parameters can be identical when trained with or without a data point [95, 104].

The data attribution problem is far more fundamental; correlated entries in a dataset
may result in similar contributions to the models final parameters. Imagine that two
users, A and B, have the same (or even similar) data: if A requests unlearning but not
B, influence techniques indicate that data from A still affects the model, which would
be possible even if the server had unlearnt their data because the data of user B is still
in the models training set.

Therefore, to prove unlearning, we pursue an algorithmic approach. Rather than
trying to verify unlearning by examining changes in the model, we require the server
to present a proof that the unlearning was correctly executed. This proof consists of
two parts:

• Proof of training. Unlearning can only be proven with respect to a model m and
a dataset D. Hence, first, we need to establish that model m was obtained from
dataset D. Therefore, the server produces a proof of training.

• Proof of unlearning. Whenever a data point d∗ is deleted from the training data
D of model m, we require a proof of unlearning that proves that an unlearning

31

3 Security of ML Systems

Users U {pub, D̂u ∼ D}u∈U Server S (pub)

if not VerifyInit(pub, com0, ρ0) : (stS,0,m0, com0, ρ0)← Init(pub)

abort D+
0 := ∅, U+

0 := ∅

D+
i := D+

i−1, U+
i := U+

i−1

add data points

k-th query D+
i := D+

i ∪ {(u, di,k)}

remove data points

j-th query U+
i := U+

i ∪ {(u, di,j)}

if not VerifyTraining(pub, comi−1, comi, ρi) (stS,i,mi, comi, ρi)← ProveTraining(stS,i−1, pub, D
+
i)

abort D+
i := ∅

if not VerifyUnlearning(pub, comi−1, comi, ρi) : (stS,i,mi, comi, ρi)← ProveUnlearning(stS,i−1, pub, U
+
i)

abort
for (u, di,j) ∈ U+

i :

if not VerifyNonMembership(pub, u, di,j, comi, πu,di,j) : πu,di,j ← ProveNonMembership(stS,i, pub, u, di,j)

abort U+
i := ∅

Initialize

i-th iteration

Proof of Training

OR Proof of Unlearning

com0, ρ0

u ∈ U , di,k ∈ D̂u

u ∈ U , di,j ∈ D̂u

train: comi, ρi

unlearn: comi, ρi

πu,di,j

Figure 3.5: Unlearning Framework. In this framework, protocols for verifiable machine
unlearning can be instantiated. These are executed iteratively between a set of users U and
a server S.

algorithm was executed that removes the contribution of data point d∗ from the
model’s parameters. This proof establishes that the updated model m′ is now
conceptually trained on a dataset D′ that does not include d∗. To verify that d∗

is not part of this training data, we further require an additional proof of this
non-membership, i. e., d∗ /∈ D′.

Furthermore, we need to capture the consistency of the training data across model
updates and evolving datasets. This requires an iteration-based protocol and cannot
be solved by naive one-shot verifications.

Unlearning framework. In Appendix C, we present a formal framework to describe
such iteration-based protocols for unlearning. Figure 3.5 shows an overview of this
framework. Our focus is on ML systems trained by a server S using data shared by users
U . We assume that each user u ∈ U holds a dataset D̂u sampled from the distribution
of data points D. To describe training and unlearning algorithms, we define a generic
interface of admissible functions based on triplets (fI , fT , fU) for initialization, training,

32

3.3 Security Beyond the Model

and unlearning (respectively). These functions are agreed upon by the users and server
and are part of public parameters pub.

The framework considers protocols where the execution proceeds in iterations after
an initialization phase. At the beginning of each iteration i, users can request the
addition or removal of data points. These are stored in sets D+

i and U+
i . After this,

the server either performs a proof of training or a proof of unlearning. For training,
the server updates model mi with data points in D+

i using training function fT . The
server then commits to the updated model and dataset with comi. Furthermore, the
server computes proof ρi to prove the correct execution of fT . Both the commitment
and proof are sent to and verified by the users. For unlearning, the procedure first
follows analogously with U+

i and unlearning function fU . In addition, for each data
point di,j ∈ U+

i , the server subsequently creates a proof of non-membership πu,di,j that
establish that data point di,j from user u is not part of the current training data set.
This proof can be verified from user u against the current commitment comi.

Instantiation. To instantiate a protocol in this framework, we need a mechanism
to prove the execution of functions fI , fT , and fU . For this, we base our construction
on Verifiable Computation (VC) and, more specifically, SNARK [42, 93] proof systems
as a generic approach to proving the correct execution of algorithms. We define the
execution of fI , fT , and fU in terms of statements in the proof system and use this to
construct proofs that the users can verify.

Second, for the dataset commitment, we internally split the dataset into training
data D and unlearnt data U . These sets are updated whenever data points are added
or removed from the dataset. Based on these, we maintain two hash lists from which
we use the head as the current commitment.

Appendix C contains a complete description of this construction. Here, we also prove
the correctness of this instantiation within the framework and its security based on
cryptographic assumptions. Moreover, we implement the main building blocks for three
different unlearning mechanisms from the machine unlearning literature and compare
their performance on different ML models and benchmark datasets.

33

Conclusions

This thesis investigates the security of machine learning models from a systems secu-
rity perspective. In this final chapter, we summarize our salient findings and discuss
potential directions for future work.

Concluding remarks. The inclusion of an ML model can make a system more
vulnerable. Yet, its deployment in a practical system introduces additional constraints
for an adversary, and an attack against the ML model is only a single step of a successful
attack against a system. We believe that the robustness of ML models cannot be
assessed in isolation and must be viewed within the context of the enclosing system.
From a research perspective, we are still in the early stages. More work is required
to understand the attack surface introduced by including ML models in a system and
how we can effectively protect our systems. This is becoming an urgent endeavor as the
integration of ML components exploded in the past and will likely continue to grow.

Future research directions. In the following, we want to discuss the research di-
rections necessary to pursue in the future.

Threat model. There is a mismatch between the study of model robustness and the
security of systems that uses these components. Currently assumed threat models are
insufficient and often do not transfer to real-world deployments of ML models [9]. In
this thesis, we discussed essential aspects and implications of this mismatch, but this
can only be considered a starting point. One of the most important directions for

35

4 Conclusions

future work is to depart from commonly studied threat models and consider real-world
adversaries against real-world systems. Future research must align assumptions of an
adversaries goals, knowledge, and capabilities to real threat vectors and extend the
study of monolithic and static ML models to practical systems.

Classical systems security. ML components are often used for tasks that are hard to
solve programmatically but amenable to be learnt from large sets of data (e. g., classi-
fying images [58], voice recognition [115], or recognizing faces [100]). Inspired by these
successes, recent efforts increasingly investigate how learnt components can replace
heuristics in “classical systems”. For example, in a database system, ML can optimize
the internal performance [57, 68, 70, 69, 80] or be used for automatic optimization of
configurations [53, 64, 6]. Another example are memory management systems that can
use ML for memory allocation [65] or to optimize garbage collection [51, 22]. Similar
to our discussion, these replacements with learnt components unavoidably open up a
new attack surface [90] but, more critically, might even allow new forms of attacks on
the interplay with classic attack strategies. For example, an adversary could construct
an attack against a learnt allocator and use this to escalate privileges in the underlying
system by enabling a memory safety vulnerability. Future work needs to understand
such attack vectors and their associated risks.

Countermeasures beyond the model. Since the advent of attacks against ML mod-
els, the research community has put significant effort into understanding what enables
these attacks and constructing appropriate countermeasures. This resulted in promis-
ing approaches for improving a model’s robustness with empirical (e. g., adversarial
training [38, 66, 113]) and formal guarantees (e. g., certified robustness [27, 112, 61]).
Ultimately, however, all current approaches are still limited to toy problems and do
not scale to the capabilities of realistic adversaries. In this work, we looked at model
robustness from a system’s perspective and how domain-specific knowledge can be
used to design an application-specific countermeasure. Integrating information about
a particular deployment of an ML model and considering robustness as a systems se-
curity problem is a promising direction for further research. For example, by using
established techniques from the systems security literature, such as information flow
control [59, 73], we can track information through a specific deployment of a system
and decide if a model is accessible (and thus vulnerable) from an attacker.

36

References

[1] General Data Protection Regulation (GDPR). Official Legal Text, 2016.

[2] California Consumer Privacy Act (CCPA). Official Legal Text, 2018.

[3] Personal Information Protection and Electronic Documents Act (PIPEDA). Of-
ficial Legal Text, 2019.

[4] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep Learning with Differential Pri-
vacy. In ACM Conference on Computer and Communications Security (CCS),
2016.

[5] Hadi Abdullah, Washington Garcia, Christian Peeters, Patrick Traynor, Kevin
R. B. Butler, and Joseph Wilson. Practical Hidden Voice Attacks against Speech
and Speaker Recognition Systems. In Symposium on Network and Distributed
System Security (NDSS), 2019.

[6] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Au-
tomatic Database Management System Tuning Through Large-scale Machine
Learning. In Conference on Management of Data (SIGMOD), 2017.

[7] David Leroy Alice Coucke, Joseph Dureau and Sébastien Maury. On-device Voice
Control on Sonos Speakers. Blog post on Sonos Tech Blog, 2022.

[8] Apple. CSAM Detection. Technical Report.

[9] Giovanni Apruzzese, Hyrum S Anderson, Savino Dambra, David Freeman, Fabio
Pierazzi, and Kevin Alejandro Roundy. Position: “Real Attackers Don’t Compute
Gradients”: Bridging the Gap Between Adversarial ML Research and Practice.
In IEEE Conference on Secure and Trustworthy Machine Learning (SaTML),
2023.

[10] Thomas Baumhauer, Pascal Schöttle, and Matthias Zeppelzauer. Machine Un-
learning: Linear Filtration for Logit-based Classifiers. Machine Learning, 2022.

37

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://laws-lois.justice.gc.ca/PDF/P-8.6.pdf
https://laws-lois.justice.gc.ca/PDF/P-8.6.pdf
https://tech-blog.sonos.com/posts/on-device-voice-control-on-sonos-speakers/
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

4 Conclusions

[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion Attacks against Ma-
chine Learning at Test Time. In Machine Learning and Knowledge Discovery in
Databases (ECML), 2013.

[12] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adver-
sarial machine learning. Pattern Recognition, 2018.

[13] David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet Allocation. In
Advances in Neural Information Processing Systems (NeurIPS), 2002.

[14] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine
Unlearning. In IEEE Symposium on Security and Privacy (S&P), 2021.

[15] Gavin Brown, Mark Bun, Vitaly Feldman, Adam D. Smith, and Kunal Talwar.
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy
Learning? In ACM SIGACT Symposium on Theory of Computing (STOC), 2021.

[16] Yinzhi Cao and Junfeng Yang. Towards Making Systems Forget with Machine
Unlearning. In IEEE Symposium on Security and Privacy (S&P), 2015.

[17] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, and Aleksander Madry. On Eval-
uating Adversarial Robustness. Computing Research Repository (CoRR),
abs/1902.06705, 2019.

[18] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The
Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Net-
works. In USENIX Security Symposium, 2019.

[19] Nicholas Carlini and David Wagner. Adversarial Examples are Not Easily De-
tected: Bypassing Ten Detection Methods. In ACM Workshop on Artificial In-
telligence and Security (AISec), 2017.

[20] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neu-
ral Networks. In IEEE Symposium on Security and Privacy (S&P), 2017.

38

[21] Nicholas Carlini and David Wagner. Audio Adversarial Examples: Targeted At-
tacks on Speech-to-Text. In IEEE Deep Learning and Security Workshop (DLS),
2018.

[22] Lujing Cen, Ryan Marcus, Hongzi Mao, Justin Gottschlich, Mohammad Al-
izadeh, and Tim Kraska. Learned Garbage Collection. In Workshop on Machine
Learning and Programming Languages (MAPL), 2020.

[23] Laurent Charlin and Richard Zemel. The Toronto Paper Matching System: An
Automated Paper-Reviewer Assignment System. In International Conference on
Machine Learning (ICML), 2013.

[24] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. Graph Unlearning. In ACM Conference on Computer and
Communications Security (CCS), 2021.

[25] Robert S. Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust
Optimization for Non-Convex Objectives. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

[26] Christopher A. Choquette-Choo, Florian Tramèr, Nicholas Carlini, and Nicolas
Papernot. Label-Only Membership Inference Attacks. In International Confer-
ence on Machine Learning (ICML), 2021.

[27] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified Adversarial
Robustness via Randomized Smoothing. In International Conference on Machine
Learning (ICML), 2019.

[28] William M. Darling. A Theoretical and Practical Implementation Tutorial on
Topic Modeling and Gibbs Sampling. In Annual Meeting of the Assoc. for Com-
putational Linguistics: Human Language Technologies (HLT), 2011.

[29] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.
Zemel. Fairness Through Awareness. In Innovations in Theoretical Computer
Science (ITCS), 2012.

[30] Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. GPTs are
GPTs: An Early Look at the Labor Market Impact Potential of Large Language
Models. Computing Research Repository (CoRR), 2023.

39

4 Conclusions

[31] Vitaly Feldman. Does Learning Require Memorization? A Short Tale About a
Long Tail. In ACM SIGACT Symposium on Theory of Computing (STOC), 2020.

[32] G David Forney. The Viterbi Algorithm. Proceedings of the IEEE, 1973.

[33] Bill Gates. The Age of AI has begun. Blog post on personal blog.

[34] GData. Wir Ändern die Spielregeln. Blog post on company blog.

[35] Amirata Ghorbani and James Zou. Data Shapley: Equitable Valuation of Data for
Machine Learning. In International Conference on Machine Learning (ICML),
2019.

[36] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal Sunshine of
the Spotless Net: Selective Forgetting in Deep Networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[37] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press,
2016.

[38] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
Harnessing Adversarial Examples. In International Conference on Learning Rep-
resentations (ICLR), 2015.

[39] Google. Our Approach to Facial Recognition. Post on company blog.

[40] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac Machine Learning.
In AAAI Conference on Artificial Intelligence (AAAI), 2021.

[41] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick D. McDaniel. On the (Statistical) Detection of Adversarial Examples.
Computing Research Repository (CoRR), 2017.

[42] Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 2016.

[43] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certi-
fied Data Removal from Machine Learning Models. In International Conference
on Machine Learning (ICML), 2020.

40

https://www.gatesnotes.com/The-Age-of-AI-Has-Begun
https://www.gdata.de/deepray
https://ai.google/responsibilities/facial-recognition/

[44] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embrac-
ing Change: Continual Learning in Deep Neural Networks. Trends in Cognitive
Sciences, 2020.

[45] Abdelfatteh Haidine, Fatima Zahra Salmam, Abdelhak Aqqal, and Aziz Dahbi.
Artificial Intelligence and Machine Learning in 5G and Beyond: A Survey and
Perspectives. Moving Broadband Mobile Communications Forward: Intelligent
Technologies for 5G and Beyond, 2021.

[46] Moritz Hardt, Eric Price, and Nati Srebro. Equality of Opportunity in Supervised
Learning. In Advances in Neural Information Processing Systems (NeurIPS),
2016.

[47] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the Knowledge
in a Neural Network. Computing Research Repository (CoRR), 2015.

[48] Matthew D. Hoffman, David M. Blei, and Francis R. Bach. Online Learning
for Latent Dirichlet Allocation. In Advances in Neural Information Processing
Systems (NeurIPS), 2010.

[49] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. Adversarial Examples Are Not Bugs, They Are
Features. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

[50] ISO Central Secretary. Information Technology – Coding of Moving Pictures
and Associated Audio for Digital Storage Media at Up to 1.5 Mbits/s – Part3:
Audio. Standard 11172-3, International Organization for Standardization, 1993.

[51] Nicholas Jacek and J. Eliot B. Moss. Learning When to Garbage Collect with
Random Forests. In International Symposium on Memory Management (ISMM),
2019.

[52] Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran, and Nico-
las Papernot. Entangled Watermarks as a Defense against Model Extraction. In
USENIX Security Symposium, 2021.

41

4 Conclusions

[53] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman.
Too Many Knobs to Tune? Towards Faster Database Tuning by Pre-selecting
Important Knobs. In Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2020.

[54] Kaspersky. Machine Learning in Cybersecurity. Blog post on company blog.

[55] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming Catastrophic Forgetting in Neural Net-
works. Computing Research Repository (CoRR), 2016.

[56] Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influ-
ence Functions. In International Conference on Machine Learning (ICML).

[57] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and Ion
Stoica. Learning to Optimize Join Queries With Deep Reinforcement Learning.
Computing Research Repository (CoRR), 2018.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2012.

[59] Maxwell N. Krohn, Alexander Yip, Micah Z. Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Tappan Morris. Information Flow Control
for Standard OS Abstractions. In Symposium on Operating Systems Principles
(SOSP), 2007.

[60] Yann LeCun. Generalization and network design strategies. Connectionism in
Perspective, 1989.

[61] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. Certified Robustness to Adversarial Examples with Differential Privacy.
In IEEE Symposium on Security and Privacy (S&P), 2019.

[62] Klas Leino and Matt Fredrikson. Stolen Memories: Leveraging Model Memo-
rization for Calibrated White-Box Membership Inference. In USENIX Security
Symposium, 2020.

42

https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity

[63] Shana Lynch. Andrew Ng: Why AI Is the New Electricity. Article on Stanford
Graduate School of Business.

[64] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J. Gordon. Query-based Workload Forecasting for Self-Driving Database
Management Systems. In Conference on Management of Data (SIGMOD), 2018.

[65] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard,
Kathryn S. McKinley, and Colin Raffel. Learning-based Memory Allocation for
C++ Server Workloads. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

[66] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks.
In International Conference on Learning Representations (ICLR), 2018.

[67] Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. Dataset Inference:
Ownership Resolution in Machine Learning. In International Conference on
Learning Representations (ICLR), 2021.

[68] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. Bao: Making Learned Query Optimization Practical.
SIGMOD Record, 2022.

[69] Ryan Marcus and Olga Papaemmanouil. Deep Reinforcement Learning for Join
Order Enumeration. In Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, 2018.

[70] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-
izadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo: A Learned
Query Optimizer. Very Large Data Base Endowment (VLDB Endowment), 2019.

[71] Bernard Marr. The Amazing Ways Tesla Is Using Artificial Intelligence And Big
Data. Article on Forbes.com.

[72] Brian B. Monson, Eric J. Hunter, Andrew J. Lotto, and Brad H. Story. The
Perceptual Significance of High-frequency Energy in the Human Voice. Frontiers
in Psychology, 2014.

43

https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
https://www.forbes.com/sites/bernardmarr/2018/01/08/the-amazing-ways-tesla-is-using-artificial-intelligence-and-big-data/?sh=63b987d42704

4 Conclusions

[73] Andrew C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In
Andrew W. Appel and Alex Aiken, editors, Symposium on Principles of Pro-
gramming Languages (POPL), 1999.

[74] Arvind Narayanan and Vitaly Shmatikov. Robust De-anonymization of Large
Sparse Datasets. In IEEE Symposium on Security and Privacy (S&P), 2008.

[75] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-Delete:
Gradient-Based Methods for Machine Unlearning. In Algorithmic Learning The-
ory (ALT), 2021.

[76] Palo Alto Networks. What is an ML-Powered NGFW? Blog post on company
blog.

[77] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. The Limitations of Deep Learning in Adversarial
Settings. In IEEE European Symposium on Security and Privacy (EuroS&P),
2016.

[78] Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha, and Michael P. Wellman.
Towards the Science of Security and Privacy in Machine Learning. Computing
Research Repository (CoRR), 2016.

[79] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a Defense to Adversarial Perturbations Against Deep
Neural Networks. In IEEE Symposium on Security and Privacy (S&P), 2016.

[80] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. QuickSel: Quick Selec-
tivity Learning with Mixture Models. In Conference on Management of Data
(SIGMOD), 2020.

[81] Bryan Parno. Autobid. Public GitHub Repository.

[82] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
Intriguing Properties of Adversarial ML Attacks in the Problem Space. In IEEE
Symposium on Security and Privacy (S&P), 2020.

44

https://www.paloaltonetworks.com/cyberpedia/what-is-an-ml-powered-ngfw
https://www.paloaltonetworks.com/cyberpedia/what-is-an-ml-powered-ngfw
https://github.com/parno/autobid

[83] Erwin Quiring, David Klein, Daniel Arp, Martin Johns, and Konrad Rieck. Ad-
versarial Preprocessing: Understanding and Preventing Image-Scaling Attacks in
Machine Learning. In USENIX Security Symposium, 2020.

[84] Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading Authorship Attribu-
tion of Source Code using Adversarial Learning. In USENIX Security Symposium,
2019.

[85] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-Flip Attack: Crushing
Neural Network With Progressive Bit Search. In International Conference on
Computer Vision (ICCV), 2019.

[86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning Rep-
resentations by Back-propagating Errors. nature, 1986.

[87] Lea Schönherr, Thorsten Eisenhofer, Steffen Zeiler, Thorsten Holz, and Dorothea
Kolossa. Imperio: Robust Over-the-Air Adversarial Examples for Automatic
Speech Recognition Systems. In Annual Computer Security Applications Confer-
ence (ACSAC), 2020.

[88] Lea Schönherr, Maximilian Golla, Thorsten Eisenhofer, Jan Wiele, Dorothea
Kolossa, and Thorsten Holz. Exploring Accidental Triggers of Smart Speakers.
Computer Speech & Language (CSL), 2022.

[89] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and Dorothea
Kolossa. Adversarial Attacks Against Automatic Speech Recognition Systems
via Psychoacoustic Hiding. In Symposium on Network and Distributed System
Security (NDSS), 2019.

[90] Roei Schuster, Jin Peng Zhou, Thorsten Eisenhofer, Paul Grubbs, and Nicolas
Papernot. Learned Systems Security. Computing Research Repository (CoRR),
2022.

[91] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha
Suresh. Remember What You Want to Forget: Algorithms for Machine Unlearn-
ing. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

45

4 Conclusions

[92] Ozan Sener and Silvio Savarese. Active Learning for Convolutional Neural Net-
works: A Core-Set Approach. In International Conference on Learning Repre-
sentations (ICLR), 2017.

[93] Srinath Setty. Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup. In Annual International Cryptology Conference (CRYPTO), 2020.

[94] Shawn Shan, Wenxin Ding, Emily Wenger, Haitao Zheng, and Ben Y. Zhao.
Post-breach Recovery: Protection against White-box Adversarial Examples for
Leaked DNN Models. In ACM Conference on Computer and Communications
Security (CCS), 2022.

[95] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas Pa-
pernot, Murat A. Erdogdu, and Ross J. Anderson. Manipulating SGD with
Data Ordering Attacks. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[96] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot, Robert D. Mullins,
and Ross Anderson. Sponge examples: Energy-latency attacks on neural net-
works. In IEEE European Symposium on Security and Privacy (EuroS&P), 2021.

[97] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic Gradient
Descent with Differentially Private Updates. In Global Conference on Signal and
Information Processing (GlobalSIP), 2013.

[98] Sophos. Intercept X: Powered by Deep Learning. Blog post on company blog.

[99] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing Properties of Neural Networks.
In International Conference on Learning Representations (ICLR), 2014.

[100] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace:
Closing the Gap to Human-Level Performance in Face Verification. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[101] Camillo J Taylor. On the Optimal Assignment of Conference Papers to Reviewers.
Technical report, 2008.

46

https://www.sophos.com/en-us/content/deep-learning-cybersecurity

[102] Apple Computer Vision Machine Learning Team. An On-device Deep Neural
Network for Face Detection. Post on company blog.

[103] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Un-
rolling SGD: Understanding Factors Influencing Machine Unlearning. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2022.

[104] Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the Neces-
sity of Auditable Algorithmic Definitions for Machine Unlearning. In USENIX
Security Symposium, 2022.

[105] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Stealing Machine Learning Models via Prediction APIs. In USENIX Secu-
rity Symposium, 2016.

[106] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. Robustness May Be at Odds with Accuracy. In International
Conference on Learning Representations (ICLR), 2019.

[107] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell Loh, Louth Rawshan, and
Sudipta Chattopadhyay. Model Agnostic Defence Against Backdoor Attacks in
Machine Learning. IEEE Transactions on Reliability, 2022.

[108] Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aäron van den
Oord. Adversarial risk and the dangers of evaluating against weak attacks. In
International Conference on Machine Learning (ICML), 2018.

[109] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[110] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck.
Machine Unlearning of Features and Labels. In Symposium on Network and
Distributed System Security (NDSS), 2023.

[111] David H. Wolpert and William G. Macready. No Free Lunch Theorems for
Optimization. IEEE Transactions on Evolutionary Computation, 1997.

47

https://machinelearning.apple.com/research/face-detection

4 Conclusions

[112] Eric Wong and J. Zico Kolter. Provable Defenses against Adversarial Examples
via the Convex Outer Adversarial Polytope. In International Conference on
Machine Learning (ICML), 2018.

[113] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is Better Than Free: Revisiting
Adversarial Training. In International Conference on Learning Representations
(ICLR), 2020.

[114] Yinjun Wu, Edgar Dobriban, and Susan B. Davidson. DeltaGrad: Rapid Re-
training of Machine Learning Models. In International Conference on Machine
Learning (ICML), 2020.

[115] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, An-
dreas Stolcke, Dong Yu, and Geoffrey Zweig. Achieving Human Parity in Con-
versational Speech Recognition. Computing Research Repository (CoRR), 2016.

[116] Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork.
Learning Fair Representations. In International Conference on Machine Learning
(ICML), 2013.

[117] Dongxu Zhang, Tianyi Luo, and Dong Wang. Learning from LDA Using Deep
Neural Networks. In Conference on Natural Language Processing and Chinese
Computing, (NLPCC), 2016.

[118] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. DolphinAttack: Inaudible Voice Commands. In ACM Conference
on Computer and Communications Security (CCS), 2017.

[119] Qi Zhou, Haipeng Chen, Yitao Zheng, and Zhen Wang. EvaLDA: Efficient Eva-
sion Attacks Towards Latent Dirichlet Allocation. In AAAI Conference on Arti-
ficial Intelligence (AAAI), 2021.

[120] Eberhard Zwicker and Hugo Fastl. Psychoacoustics: Facts and Models. 2013.

48

Part II

Publications

49

List of Publications

Below is the list of papers in this thesis which are also included in Appendices A to C.
A list of additional contributions is given on the next page.

Publications in this Thesis

[1] Thorsten Eisenhofer, Erwin Quiring, Jonas Möller, Doreen Riepel, Thorsten Holz,
and Konrad Rieck. No more Reviewer #2: Subverting Automatic Paper-Reviewer
Assignment using Adversarial Learning. In USENIX Security Symposium, 2023.

[2] Thorsten Eisenhofer, Lea Schönherr, Joel Frank, Lars Speckemeier, Dorothea
Kolossa, and Thorsten Holz. Dompteur: Taming Audio Adversarial Examples. In
USENIX Security Symposium, 2021.

[3] Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga
Ohrimenko, and Nicolas Papernot. Verifiable and Provably Secure Machine Un-
learning. Computing Research Repository (CoRR), 2022.

51

List of Publications

Other Contributions

[1] Joel Frank, Franziska Herbert, Jonas Ricker, Lea Schönherr, Thorsten Eisenhofer,
Asja Fischer, Markus Dürmuth, and Thorsten Holz. “Most Seemed Real”: A Rep-
resentative Study on Human Detection of Deepfakes Across Media and Countries.
Manuscript in Submission, 2023.

[2] David Pape, Sina Däubener, Thorsten Eisenhofer, Antonio Cina, and Lea Schön-
herr. Stealing with Uncertainty Quantification Models. Manuscript in Submission,
2023.

[3] Hojjat Aghakhani, Thorsten Eisenhofer, Lea Schönherr, Dorothea Kolossa,
Thorsten Holz, Christopher Kruegel, and Giovanni Vigna. VenoMave: Targeted
Poisoning Against Speech Recognition. In Secure and Trustworthy Machine Learn-
ing (SaTML), 2023.

[4] Nico Schiller, Merlin Chlosta, Moritz Schloegel, Nils Bars, Thorsten Eisenhofer, To-
bias Scharnowski, Felix Domke, Lea Schönherr, and Thorsten Holz. Drone Security
and the Mysterious Case of DJI’s DroneID. In Network and Distributed System
Security Symposium (NDSS), 2023.

[5] Roei Schuster, Jin Peng Zhou, Thorsten Eisenhofer, Paul Grubbs, and Nicolas
Papernot. Learned Systems Security. Computing Research Repository (CoRR),
2023.

[6] Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and Doreen
Riepel. Password-Authenticated Key Exchange from Group Actions. In Annual
International Cryptology Conference (CRYPTO), 2022.

[7] Lea Schönherr, Maximilian Golla, Thorsten Eisenhofer, Jan Wiele, Dorothea
Kolossa, and Thorsten Holz. Exploring Accidental Triggers of Smart Speakers.
Computer Speech & Language (CSL), 2022.

[8] Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa,
and Thorsten Holz. Leveraging Frequency Analysis for Deep Fake Image Recogni-
tion. In International Conference on Machine Learning (ICML), 2020.

[9] Lea Schönherr, Thorsten Eisenhofer, Steffen Zeiler, Thorsten Holz, and Dorothea
Kolossa. Imperio: Robust Over-the-Air Adversarial Examples for Automatic Speech
Recognition Systems. In Annual Computer Security Applications Conference (AC-
SAC), 2020.

52

No more Reviewer #2: Subverting
Automatic Paper-Reviewer Assign-
ment using Adversarial Learning

Publication Data

Thorsten Eisenhofer, Erwin Quiring, Jonas Möller, Doreen Riepel, Thorsten Holz, and
Konrad Rieck. No more Reviewer #2: Subverting Automatic Paper-Reviewer Assign-
ment using Adversarial Learning. In USENIX Security Symposium, 2023.

53

No more Reviewer #2: Subverting Automatic
Paper-Reviewer Assignment using Adversarial

Learning

Thorsten Eisenhofer1,∗, Erwin Quiring1,2,∗, Jonas Möller3, Doreen Riepel1,
Thorsten Holz4, Konrad Rieck3

1 Ruhr University Bochum
2 International Computer Science Institute (ICSI) Berkeley

3 Technische Universität Berlin
4 CISPA Helmholtz Center for Information Security

Abstract

The number of papers submitted to academic conferences is steadily rising in many sci-
entific disciplines. To handle this growth, systems for automatic paper-reviewer assign-
ments are increasingly used during the reviewing process. These systems use statistical
topic models to characterize the content of submissions and automate the assignment
to reviewers. In this paper, we show that this automation can be manipulated using
adversarial learning. We propose an attack that adapts a given paper so that it misleads
the assignment and selects its own reviewers. Our attack is based on a novel optimiza-
tion strategy that alternates between the feature space and problem space to realize
unobtrusive changes to the paper. To evaluate the feasibility of our attack, we simulate
the paper-reviewer assignment of an actual security conference (IEEE S&P) with 165
reviewers on the program committee. Our results show that we can successfully select
and remove reviewers without access to the assignment system. Moreover, we demon-
strate that the manipulated papers remain plausible and are often indistinguishable
from benign submissions.

∗ Shared first authorship

A Subverting Automatic Paper-Reviewer Assignment

1 Introduction

Peer review is a major pillar of academic research and the scientific publication process.
Despite its well-known weaknesses, it is still an essential instrument for ensuring high-
quality standards through the independent evaluation of scientific findings [1, 2, 3]. For
this evaluation, a submission is assigned to a group of reviewers, taking into account
their expertise, preferences, and potential biases. For conferences, this assignment is
traditionally carried out by a program chair, while for journals, the task is performed by
an editor. This mechanism has proven effective in the past, but is becoming increasingly
difficult to realize as research communities grow. For example, the number of papers
submitted to top-tier security conferences is increasing exponentially, reaching over
3,000 submissions in 2020. Likewise, the number of reviewers continuously grows for
all major security conferences [4].

To handle this growth, conference management tools have become indispensable in
peer review. They allow reviewers to bid for submissions and support the program
chair to find a good assignment based on a best-effort matching. Unfortunately, even
these tools reach their limit when the number of submissions continues to grow and
manual bidding becomes intractable, as for example, in the area of machine learning.
Major conferences in this area regularly have over 10,000 submissions that need to
be distributed among more than 7,000 reviewers [5]. For this reason, conference man-
agement tools are increasingly extended with automatic systems for paper-reviewer
assignment [6, 7]. These systems use topic models from machine learning to assess
reviewer expertise, filter submissions, and automate the assignment process.

In this work, we show that this automation can be exploited to manipulate the as-
signment of reviewers. In contrast to prior work that focused on bid manipulations and
reviewer collusion [8, 9], our attack rests on adversarial learning. In particular, we pro-
pose an attack that adapts a given paper so that it misleads the underlying topic model.
This enables us to reject and select specific reviewers from the program committee. To
reach this goal, we introduce a novel optimization strategy that alternates between the
feature space and problem space when adapting a paper. This optimization allows us
to preserve the semantics and plausibility of the document, while carefully changing
the assignment of reviewers.

Our attack consists of two alternating steps: First, we aim at misleading the topic
model employed in current assignment systems [7, 6]. This model defines a latent

56

1 Introduction

topic space that is difficult to attack because neither gradients nor an explicit decision
boundary exist. To address this problem, we develop a search algorithm for exploring
the latent space and manipulating decisions in it. As a counterpart, we introduce a
framework for modifying papers in the problem space. This framework provides several
transformations for adapting the paper’s content, ranging from invisible comments to
synonym replacement and generated text. These transformations enable us to preserve
the paper’s semantics, while gradually changing the assignment of reviewers.

To empirically evaluate the practical feasibility of our attack, we simulate the paper-
reviewer assignment of the 43rd IEEE Symposium on Security and Privacy (IEEE S&P)
with the original program committee of 165 reviewers in both a black-box and a white-
box threat scenario. As the basis for our attacks, we consider 32 original submissions
that are publicly available with LATEX source code.

Our white-box adversary achieves an alarming performance: we can successfully re-
move any of the initially assigned reviewers from a submission, and even scale the
attack to completely choose all reviewers in the automated assignment process. In the
black-box scenario, we can craft adversarial papers that transfer to an unknown target
system by only using public knowledge about a conference. We achieve a success rate
of up to 90% to select a reviewer and 81% to reject one. Furthermore, we demonstrate
that the attack remains robust against variations in the training data.

Our work points to a serious problem in the current peer review process: With
the application of machine learning, the process inherits vulnerabilities and becomes
susceptible to new forms of manipulation. We discuss potential defenses: (1) For the
feature space, robust topic modeling may limit the attacker’s capabilities and (2) for the
problem space, we recommend using optical character recognition (OCR) techniques
to retrieve the displayed text. Nevertheless, these safeguards cannot completely fend
off our manipulations and reviewers should be made aware of this threat.

Contributions. We make the following key contributions:

• Attack against topic models. We introduce a novel attack against topic models
suitable for manipulating the ranking of reviewers. The attack does not depend
on the availability of gradients and explores the latent topic space through an
efficient beam search.

• Problem-space transformations. Our attack ensures that both the semantics and
plausibility of the generated adversarial papers are preserved. This goal is achieved

57

A Subverting Automatic Paper-Reviewer Assignment

by a variety of transformations that carefully manipulate the document format
and text of a submission.

• Adversarial papers. We present a method for constructing adversarial papers in
a black-box and white-box scenario, unveiling a serious problem in automatic
reviewer assignment. The attack rests on a novel hybrid approach to construct
adversarial examples in discrete domains

Examples of the created adversarial papers are provided at https://github.com/rub-
syssec/adversarial-papers. We also make our code and artifacts publicly available here.

2 Technical Background

Let us start by reviewing the necessary background for the design of our attack,
covering the process of paper-review assignment and the underlying topic modeling.
Systems for paper-reviewer assignment. To cope with the abundance of submis-
sions, several concepts have been proposed to assign reviewers to submissions [e.g.,
10, 11, 12, 13]. In practice, the most widely used concept is The Toronto Paper Match-
ing System (TPMS) by Charlin and Zemel [7]. Because of its high-quality assignments
and direct integration with Microsoft’s conference management tool CMT [14], TPMS
is used by numerous conferences in different fields, including ACM CCS in 2017–2019
and NeurIPS/ICML. TPMS can be considered the de facto standard for automatic
matching of papers to reviewers. Unfortunately, the implementation of TPMS is not
publicly available and thus we focus in this work on Autobid [6], an open-source real-
ization of the TPMS concept. Autobid closely follows the process described by Charlin
and Zemel [7]. The system has been designed to work alongside HotCRP [15] and was
used to support reviewer assignment at the IEEE Symposium on Security and Privacy
(S&P) in 2017 and 2018.

Technically, TPMS and Autobid implement a processing pipeline similar to most
matching concepts: (a) the text from the submission document is extracted and cleansed
using natural language processing, (b) the preprocessed text is then mapped to the la-
tent space of a topic model, and finally (c) an assignment is determined by deriving a
ranking of reviewers. In the following, we review these steps in detail.

(a) Text preprocessing. When working with natural languages, multiple steps are
required to bring text into a form suitable for machine learning (see Figure 1). As paper

58

https://github.com/rub-syssec/adversarial-papers
https://github.com/rub-syssec/adversarial-papers

2 Technical Background

submissions can be provided in different formats, the pipeline starts by extracting text
from the underlying document, typically the PDF format. This original document
resides in the problem space of our attack and is denoted as z in the following. Autobid
employs the tool pdftotext for this task, which is used in our evaluation in Section 4.
The extracted text is then normalized using a preprocessor function ρ. Typically, it
is tokenized, converted to lowercase, and stemmed [16]. Subsequently, stop words are
removed so that each submission is now represented as a sequence of filtered stems.
Autobid employs the NLTK package [17] to perform this task.

Finally, a feature extractor Φ maps the input ρ(z) to a bag-of-words vector x ∈ N|V|

with V being the vocabulary formed over all words (stems). That is, a submission
is represented by a high-dimensional vector whose individual dimensions reflect the
count of words. Although this representation is frequently applied in supervised learn-
ing, the high dimensionality is problematic for unsupervised learning and complicates
determining topics in the submission.

(b) Topic modeling. The key to matching reviewers to papers is the automatic
identification of topics in the text. This unsupervised learning task is denoted as topic
modeling. While there exist several algorithms for this modeling, many assignment
systems, including TPMS and Autobid, use Latent Dirichlet Allocation (LDA). LDA is
a Bayesian probabilistic method for topic modeling that allows representing a document
as a low-dimension mixture of latent topics. Formally, we define this representation as
a function

Γ: N|V| −→ T , x 7→ θx

mapping a bag-of-words vector x to a low-dimensional vector space T , whose dimen-
sions reflect different topics.

Generally, LDA is modeled as a generative probabilistic process [18, 19, 20]. It as-
sumes a corpus D of documents and models each document as a random mixture over

PDF

File input
z

This paper
shows that
reviewing is
attackable
...

Extracted
text

paper show
review
attack
...

Preprocessed
text


1
1
0
1
0
1


Feature
Vector x

Text
extractor

ρ Φ

Figure 1: Text preprocessing in paper-reviewer assignment.

59

A Subverting Automatic Paper-Reviewer Assignment

a set of latent topics T . A topic t is characterized by a multinomial distribution over
the vocabulary V , and drawn from a Dirichlet distribution ϕt ∼ Dirichlet(β) with the
prior β. The Dirichlet prior is usually sparse (i.e., β < 1) to model that words are not
uniformly assigned to topics. Given these topics, for each document x ∈ D, a distri-
bution of topics θx ∼ Dirichlet(α) is drawn. Again, the prior α is sparse to account
for that documents are usually only associated with a small number of topics. Finally,
for each word wi ∈ x, a topic ti ∼ Multinom(θx) is selected and the observed word
wi ∼ Multinom(ϕti) is drawn. This process can be summarized by the joint probability

P (w, t, θ, ϕ|α, β) = P (ϕ|β)P (θ|α)P (t|θ)P (w|ϕt) (1)

with w = (w1, . . . , w|x|) and t = (t1, . . . , t|x|).
To create a topic model in practice, we need to reverse this process and learn the

posterior distribution of the latent variables t, θ, and ϕ given the observed documents
D. Specifically, we need to solve

P (θ, ϕ, t|w, α, β) =
P (θ, ϕ, t,w|α, β)

P (w|α, β)
. (2)

Solving this equation is intractable as the term P (w|α, β) cannot be computed ex-
actly [18]. To address this, different approximated techniques, such as variational in-
ference [18, 19] or Gibbs Sampling [20], are typically used for implementations of LDA.
Autobid builds on variational inference based on the implementation of GenSim [21].

For the feature vector x of a new submission, the same technique—conditioned on
the corpus D—is used to compute the corresponding topic mixture θx. Attacking this
process is challenging, as no gradients or other guides for moving in the direction of
particular topics are directly available. Hence, we develop a new search algorithm for
subverting the topic assignment of LDA in Section 3.1.

(c) Paper-reviewer assignment. Finally, the topic model is used to estimate the
reviewer expertise and automate the matching of submissions to reviewers. More specif-
ically, let R be the set of all potential reviewers and S a set of submissions x ∈ N|V|.
For each reviewer r, we collect an archive Ar ∈ N|V| representative of the reviewer’s ex-
pertise and interests. Since researchers are naturally described best by their works, this
could, for example, be a selected set of previously published papers. The corresponding
archives are modeled as a union over all papers.

For each pair of reviewer r and submission x, a bidding score br,x is calculated. This
score reflects the similarity between the reviewer’s archive Ar and a submission x: the

60

3 Adversarial Papers

more similar, the higher the score. Given the topic extractor Γ(·), a reviewer r and a
submission x, Autobid defines the bidding score as the following dot-product

br,x := Γ(Ar) · Γ(x)⊤. (3)

Subsequently, these bidding scores are used for the final assignment A ∈ {0, 1}|R|×|S|

with the goal to maximize the similarity between reviewers and submissions. In this
phase, additional constraints are included: the assignment is subjected to (1) the tar-
geted number of reviewers Lx assigned to a submission and (2) the maximum number
of submissions Lr assigned to a reviewer. More formally, we can describe the assignment
as the following bipartite matching problem:

maximize
A

∑
r

∑
x

br,x · Ar,x

subject to Ar,x ∈ {0, 1} ∀r,x∑
r

Ar,x ≤ Lx ∀x∑
x

Ar,x ≤ Lr ∀r

This optimization problem can then be reformulated and efficiently solved with Linear
Programming (LP) [22].

3 Adversarial Papers

We proceed to introduce our approach for subverting the paper-reviewer assignments.
To this end, we first define a threat model for our attack, and then examine challenges
and required steps to control the matching.
Threat model. We consider a scenario where the adversary only modifies her submission—
the adversarial paper—to manipulate the assigned reviewers. We assume two represen-
tative classes of adversaries with varying degrees of knowledge. First, we focus on
white-box adversaries with complete access to the assignment system, including the
trained model and reviewer archives. This represents a very strong class of adversaries
and allows us to generally study the strength as well as limitations of our attack against
assignment systems. Second, we study the more realistic scenario with a black-box ad-
versary. The adversary is assumed to have only a general knowledge about the assign-
ment system (i. e., AutoBid is an open-source project [6]). No access to the training data

61

A Subverting Automatic Paper-Reviewer Assignment

ZProblem Space FFeature Space

A
ut
om

at
ic
Pa

pe
r-
R
ev
ie
w
er

A
ss
ig
nm

en
tS

ys
te
m

Ranking

PDF

z

Submission

Adversarial
Submission

1

2

3 7

4

5

6

z'

x

x'

Side Effect

LaTeX

Figure 2: Feature-problem-space attack. For a submission z, we construct an adversar-
ial submission z′ that leads to a targeted assignment of reviewers. Our attack alternately
switches between Z and F . In step ¶, we extract word counts x from submission z, and
use a search algorithm to change x in F to obtain the desired ranking (step ·). To guide
this search, we query the paper-reviewer assignment system for scores (step ¸). Next, we
realize the modifications in the problem space Z and manipulate z (step ¹). Projecting the
resulting submission back to F , the submission vector will be shifted due to side effects and
transformation limitations (step º). This shift is considered by continuing the search process
from this new position and repeating this process iteratively (step ») until we obtain a valid
adversarial submission z′ (step ¼).

and learned model is given. In this setting, we envision adversaries that exploit public
information about a conference, such as knowledge about the program committee.

Challenges. The adversary has to operate both in the problem space Z and the
feature space F . The former consists of the input objects (e. g., the LATEX source files
of the paper); the latter contains the feature vectors that are used as inputs for the
learning system. In contrast to domains like image recognition, the mapping from
the problem space to the feature space is not bijective, i. e., there is no one-to-one
correspondence between Z and F . This poses a challenge for the adversary because a
promising feature vector may not be mapped to a valid submission. A further obstacle is
that some modifications in the problem space cannot be applied without side effects: If
an adversary, for instance, adds a sentence to include a particular word, she inevitably
adds other words that change the feature vector.

To deal with these challenges, we introduce a hybrid optimization strategy that
alternates between the feature-space and problem-space representations of the attack
submission. This optimization enables us to preserve the semantics and plausibility of

62

3 Adversarial Papers

the document, while at the same time gradually changing the assignment of reviewers.
A general overview of our attack is outlined in Figure 2. Second, we transfer problem-
space restrictions to the feature space. In this way, we resolve restrictions in a generic
manner without adjusting our problem-space transformations.

Attack goals. Given a submission z, our goal is to find an adversarial paper z′ that
leads to the adversary’s targeted review assignment. In the feature space, we thus want
to manipulate the set of assigned reviewers Rx. That is, we want to select and reject
arbitrary reviewers to be included in respectively excluded from Rx. Formally, we define
two sets Rsel and Rrej and our goal is to find a vector δ ∈ F such that the modified
word counts x′ := x + δ fulfill

r ∈ Rsel ⇒ r ∈ Rx′ , and

r ∈ Rrej ⇒ r /∈ Rx′ , ∀r ∈ R.
(4)

We require every reviewer r ∈ Rsel is included in Rx′ and likewise every reviewer r ∈ Rrej

excluded from Rx′ . In addition, we take care that the targeted solution is feasible with
|Rsel| ≤ Lx and |Rrej| ≤ |R| − Lx.

Furthermore, we restrict the modifications to ||δ||1 ≤ Lmax
1 and ||δ||∞ ≤ Lmax

∞ . The
L1 constraint limits the amount of modifications to the submissions and makes the
attack less suspicious. Similarly, the L∞ constraint restricts the maximum change to
a single feature, so that a word is not included too frequently. Finally, with respect to
the concrete assignment process, we assume an automatic matching that always selects
the reviewers with the highest assignment scores. We note that this assumption can
be relaxed, as shown by Jecmen et al. [8], and combined with colluding reviewers. We
further discuss the impact of concurring submissions in Section 7.

For manipulations in the problem space, we design various transformations for adapt-
ing the submission z. We denote a single transformation by ω : Z −→ Z , z 7→ z′, where
multiple transformations can be chained together as Ω = ωk ◦ · · · ◦ ω2 ◦ ω1. To avoid
transformations from creating artifacts and visible clues, we introduce the following
problem-space constraints: First, we need to preserve the semantics of the text, so that
the paper is still a meaningful submission. Second, we add a plausibility constraint,
that is, the modifications should be as inconspicuous as possible. We summarize the
constraints as Υ and write Ω(z) |= Υ if a transformation sequence Ω on a submission
fulfills these constraints.

63

A Subverting Automatic Paper-Reviewer Assignment

Optimization problem. We arrive at the following optimization problem for gen-
erating adversarial examples, integrating constraints from the problem space and the
feature space:

r ∈ Rsel ⇒ r ∈ Rx′ , and

r ∈ Rrej ⇒ r /∈ Rx′ , ∀r ∈ R

subject to ||δ||1 ≤ Lmax
1 and ||δ||∞ ≤ Lmax

∞

Ω(z) |= Υ

(5)

with x = Φ ◦ ρ(z), x′ = Φ ◦ ρ(Ω(z)), and δ = (x′ − x). We proceed to realize this op-
timization strategy by first introducing our attack in the feature space and then in the
problem space, before merging both components.

3.1 Feature Space

In an automatic paper-reviewer assignment system, the set of reviewers Rx for a
submission is determined by the computed assignment scores br,x between reviewers r

(characterized by their archives Ar) and the submission vector x:

br,x := Γ(Ar) · Γ(x)⊤ (6)

To change the assignment score and thus affect the matching, we can only influence
the extracted high-level features Γ(x) since Ar is fixed for a given set of R. However,
even when we have full control over Γ(x), changing the relative ordering—the ranking—
between reviewers is not straightforward. For instance, suppose we have two reviewers
r1 and r2 that share most topics (i.e., Γ(Ar1) ≈ Γ(Ar2)), adjusting Γ(x) in this case will
have a similar effect on both. In particular, if we naïvely try to increase the assignment
score from r1, we simultaneously also increase the score of r2 and vice versa. Even if
reviewers are not working in the same area, their topic distributions often partially
overlap, as their research builds on similar principles and concepts. Hence, to modify
the ranking we need to carefully maneuver the submission in the feature space. This is
significantly more challenging compared to attacking a classification, as we need to both
attack the model’s prediction while simultaneously considering effects on concurring
reviewers.

Our attack is further complicated by the fact that altering the topic distribution itself
is a challenging task, since we need to make changes in the latent topic space. For LDA,

64

3 Adversarial Papers

this distribution Γ(x) = θx is computed using a probabilistic inference procedure. Thus,
typical gradient-style attacks are not applicable. Indeed, Zhou et al. [23] even show
that the manipulation of this inference is NP-hard. Moreover, LDA typically assigns
only a small weight to individual words, so an attacker is required to manipulate a
comparatively large set of words for subverting the topic assignment.

To address both of these challenges, we use a stochastic beam search. For a given
submission vector x, we start with an empty modification vector δ which is extended
in each iteration until we find a successful submission vector x′ := x+ δ or a maximum
number of iteration I is reached. During this search, we consider B candidate vectors
in parallel and select successors after each iteration with a probability increasing as a
function of the candidates’ loss.
Loss. For our search, we define the following loss function to evaluate the quality of a
submission x in terms of the objective from Equation 4 that incorporates the selection
and rejection of reviewers:

ℓ := ℓsel + ℓrej (7)

For selected reviewers, the loss ℓsel is reduced when the assignment scores br̂,x increase
or when the ranks of the reviewers improve (i. e., when reviewers ascend in the ranking):

ℓsel :=
∑
r̂∈Rsel

rankr̂
x · (1− br̂,x) (8)

where rankr̂
x is the rank of reviewer r̂ for submission x. Similarly, for rejected reviewers

the loss ℓrej is reduced when the assignment scores bř,x decrease:

ℓrej :=
∑
ř∈Rrej

max(rankrej
x − rankř

x, 0) · (bř,x − brrej,x) (9)

where rankrej
x is the target rank for a rejected reviewer (i. e., rejected reviewer are pushed

down towards this rank) and brrej,x is the corresponding assignment score. This loss is
designed to focus on reviewers that are far off, but simultaneously allows reviewers to
provide “room” for following reviewers, for example, when we want to move a group of
reviewers upwards/downwards in the ranking.

We consider a submission vector x successful when the objective from Equation 4 is
fulfilled. At this point, we are naturally just at the boundary of the underlying decision
function. To make the submission vector more resilient, we could continue to decrease
the loss. However, since we already successfully ordered the reviewer (i. e., the ranking),

65

A Subverting Automatic Paper-Reviewer Assignment

V

r~

r1

r2

Figure 3: Reviewer words. Based on the topic model, we associate reviewer with a set of
predictive words. Given target reviewer r̃ and a set of concurring reviewers R = {r1, r2}, we
construct distributions ϕ̂+

r̃,R and ϕ̂−
r̃,R. Sampling from these distributions yield words that are

only predictive for reviewer r̃ respectively reviewers in R.

we are more interested in maximizing the margin of selected and rejected reviewers to
the border of Rx. We denote this margin as Φ and set ℓ := −Φ whenever x satisfies
Equation 4. Decreasing the loss is then equivalent to maximizing Φ.

Candidate generation. A key operation of the beam search is the generation of
new candidate vectors. We create a successor from a given submission by adding (re-
spectively removing) k words to adjust topic distribution θx = Γ(x) and ultimately the
ranking of submission x. To select words, we represent (broadly speaking) each reviewer
by a set of predictive words and sample words that lie in the disjunction between a
target and its concurring reviewers. An example of this is shown in Figure 3.

To construct these sets, we first represent each reviewer r by a reviewer to words
distribution ϕ̂r over vocabulary V . Intuitively, this distribution assigns each word the
probability how predictive it is for r. Formally, we define the probability mass function
for ϕ̂r as follows:

Qr : V → R, w 7→
1
|T |

∑
t∈T P (w | t) P (t | r)∑

w∈V
1
|T |

∑
t∈T P (w | t) P (t | r)

Remember that each topic t defines a distribution over V and each reviewer can be
represented by Γ(Ar). Qr assigns each word the average probability over all topics T

scaled by the relevance of topic t for reviewer r. Randomly sampling from ϕ̂r thus yield
words with a probability given as a function of their predictiveness for r. In practice,
V is typically large and most words are assigned with an insignificant probability. To

66

3 Adversarial Papers

improve performance, we therefore restrict ϕ̂r to the ν words with highest probability.
We rescale the mass function to sum up to 1 so that ϕ̂ forms a valid distribution.

To select r, we could now simply add predictive words sampled from this distribution.
However, as described earlier, naively doing this will likely have unwanted side effects
because of concurring reviewers. To account for this, we further refine this distribution
and simultaneously consider multiple reviewers. Let r̃ be a targeted reviewer and R

a set of concurring reviewers. We want to restrict ϕ̂r̃ to only include words that are
predictive for r̃ but not for any reviewer in R. Specifically, we define ϕ̂+

r̃,R with

Q+
r̃,R : V → R, w 7→


Qr̃(w) if Qr̃(w) 6= 0 ∧

∀r ∈ R : Qr(w) = 0

0 otherwise

Subsequently, to form a valid probability mass function, we rescale Q+
r̃,R to sum up

to 1. Note for R = ∅ it follows ϕ̂+
r̃,R = ϕ̂r̃. Sampling from ϕ̂+

r̃,R only yields words that
are predictive for r̃ but not R. Often we are also interested in the opposite case, i.e.,
words that are predictive for all reviewer in R but not for r̃ (e.g., when we want to
remove words to promote r̃ in the ranking). Analogous, we define ϕ̂−

r̃,R and write

Q−
r̃,R : V → R, w 7→


1
|R|

∑
r∈R Qr(w) if Qr̃(w) = 0 ∧

∀r ∈ R : Qr(w) 6= 0

0 otherwise

Again, we rescale Q−
r̃,R to sum up to 1. For R = ∅, the distribution ϕ̂−

r̃,R is not
well defined, as its mass function always evaluates to 0 and we thus set ϕ̂−

r̃,R := ϕ̂r̃.
Figure 3 graphically depict this construction. For reviewer selection, we consider sets
of concurring reviewer R that are close to r in the ranking. Specifically, we randomly
sample M subsets from

R ⊆ Pow({r | ∀r 6= r̃ ∈ R : 0 ≤ rankr̃ − rankr − υ ≤ ω})

for a given reviewer window ω with offset υ. In other words, we exploit locality and
focus on reviewer that are either before or close behind r in the ranking. For each
subset, we create two candidates by (1) adding k words from ϕ̂+

r̃,R respectively (2)
remove k words from ϕ̂−

r̃,R. Reviewer rejection follows analogous with the distributions
interchanged and sets sampled from

R ⊆ Pow({r | ∀r 6= r̃ ∈ R : −ω ≤ rankr̃ − rankr + υ ≤ 0})

67

A Subverting Automatic Paper-Reviewer Assignment

Table 1: Problem-space transformations. Overview of transformations to realize modi-
fications in the problem space. They are grouped by deniability (text, encoding, format) and
the capability to add or delete words. For a detailed description, see Appendix J.

Modification

Type Transformation Add. Del.

Text-level

Reference addition #
Synonym
Spelling mistake #
Language model #

Encoding-level Homoglyph #
Format-level Hidden box

Finally, for multiple target reviewer in Rsel and Rrej, we consider the union of candidates
from individual reviewer.

3.2 Problem Space

The result of the feature space attack is a modification vector δ ∈ F containing the
words that have to be modified in the problem space. These words must be incorporated
into an actual template PDF file z′ ∈ Z such that both the semantics and plausibility
constraints are satisfied. Fortunately, the assignment system obtains a document as
input and not the raw text. This provides an adversary with more capabilities and
flexibility. She can carefully manipulate the text of her submission as well as exploit
weak spots in the text representation or document format.

Consequently, we divide the modifications into text-level, encoding-level, and format-
level transformations—sorted according to their deniability. Text-level modifications
operate on the actual text, so that only targeted modifications are possible. However,
the modifications are deniable if the submission raises suspicion during reviewing.
Encoding-level and format-level transformations manipulate the text representation
and format, respectively, and enable large modifications, but are not deniable once de-

68

3 Adversarial Papers

tected. Table 1 lists the transformations implemented in our approach. For a detailed
overview, we refer the reader to Appendix J.

Text-level transformations. We begin with transformations that are based solely
on changes to the visible text and applicable to any text format. As such, they cannot
be readily recognized without a semantic analysis of the text.

(a) Reference addition. As the first transformation, we consider additions to the
submission’s bibliography. The transformation adds real references that contain the
words to be added. As references, we use publications from security conferences and
security-related technical reports. Our evaluation demonstrates that this transforma-
tion is very effective, while creating plausible and semantics-preserving changes to a
paper. However, it introduces side effects, as not only selected words are added, but
also parts of the conference names, authors, and titles. This motivates the hybrid search
strategy that we outline in Section 3.3.

(b) Synonym. We develop a transformation that replaces a word with a synonym. To
enhance the quality of the proposed synonyms, instead of using a general model for the
English language [e. g., 24, 25, 26], we use a security-domain specific neural embedding
that we compute on a collection of 11,770 security papers. Section 7 presents the
dataset. This domain-specific model increases the quality of the synonyms, so that this
transformation is also difficult to spot.

(c) Spelling mistake. As a third type of text-level manipulations, we implement a
spelling-mistake transformation, which is common for misleading text classifiers [27,
28]. Here, we improve on prior work by trying to find typographical errors from a list of
common misspellings [29] instead of introducing arbitrary mistakes. For example, the
suffix ance is often confused with ence, so that “appearance” becomes the unobtrusive
misspelling “appearence”. If we do not find such errors, we apply a common procedure
from the adversarial learning literature: We either swap two adjacent letters or delete
a letter in the word [24, 27, 28].

(d) Language model. Finally, we apply the large-scale unsupervised language model
OPT [30] to create text containing the words to be added. To generate security-related
text, we finetune the model using the corpus of 11,770 security papers. While the cre-
ated sentences are not necessarily plausible, this transformation allows us to technically
evaluate the possibility that an adversary creates new text to insert words. Given the
increasing capabilities of language models, we expect the chances of creating plausible

69

A Subverting Automatic Paper-Reviewer Assignment

text to rise in the long run. Moreover, we assume that in practice attackers would
manually polish the generated text to reduce their detection probability.

Encoding-level transformations. As the second class of transformations, we con-
sider manipulations of the text encoding. These manipulations may include the substi-
tution of characters, the application of unicode operations, or changes to the font face
and color. For our implementation, we focus on homoglyph transformation, inspired by
previous works that replaces characters with visually similar counterparts [24, 31]. By
replacing a character with a homoglyph, we can remove selected words from the bag-
of-words vector used for the topic model. Similarly, there are several other strategies
for tampering with text encoding [32]. Since these manipulations also change only the
visual appearance of the text, we consider homoglyphs as a representative example of
the class of encoding-level transformations.

Format-level transformations. As the third class of transformations, we focus on
changes specific to the underlying document format, such as accessibility features,
scripting support, and parsing ambiguity [33]. As an example of this class of transfor-
mations, we consider hidden boxes in the PDF format. Our transformation relies on
accessibility support with the latex package accsupp to define an invisible alternative
text in a hidden box associated with a word. The text extractor processes the alternate
text, while PDF readers display only the original word. This discrepancy allows an
attacker to add words as alternate text. Likewise, she can put an empty alternative
text over a word that should be removed.

Improved transformations. In addition, we exploit the preprocessing implemented
by assignment systems. First, we benefit from stemming, so that the transformations
only need to add or delete stems instead of words. This increases the possibilities to find
suitable text manipulations. For example, an attacker can modify the words attacker
or attackable to remove the feature attack, since both are reduced to the same stem.
Second, we exploit the filtering of stop words. The hidden box transformation requires
sacrificing a word for defining an alternative text. As stop words are not part of the
feature vector, no side effects occur if they are changed.

70

3 Adversarial Papers

3.3 Feature-Problem-Space Attack

We are now equipped with (i) a strategy to find modifications δ ∈ F and (ii) trans-
formations ω ∈ Z to realize δ in a paper submission. The ultimately missing piece is
an optimization strategy that brings these two components together. In general, this
optimization is responsible for guiding the transformations towards the targeted as-
signment. In the following, we first present the basic principle of our applied strategy
and then introduce two practical extensions.
Hybrid optimization strategy. Due to the challenges around the problem space
and the feature space, we use a strategy that switches alternately between Z and F .
Figure 2 on page 62 schematically illustrates our alternating approach. For an initial
submission z, the adversary extracts the features (step ¶) and performs a feature-space
attack (step · and ¸). As Φ is not invertible, the adversary then has to find suitable
transformations in the problem space (step ¹) that realize the requested modifications.
This leads to a new feature vector in F (step º). However, this vector is shifted due
to side effects and limitations of the transformations. Consequently, the adversary
continues her search from this new position and repeats the process iteratively until
the target is reached or the maximum number of iterations have passed.

We note that side effects are not always negative as assumed by prior work [34].
In our evaluation, for example, we found that the additional words introduced by the
reference transformation can further push a reviewer’s rank towards the target, since
the additional words may also relate to other selected reviewers, for example, due to
co-authors or paper titles. However, the impact of side effects is difficult to predict in
advance, so that an optimization strategy should be capable of dealing with positive
as well as negative side effects.

Constraint mapping Z → F . Our first extension to this hybrid strategy addresses
the complexity of problem-space modifications. In practice, not every requested mod-
ification from F can be realized in Z with the implemented transformations due to
PDF and LATEX restrictions. For example, in LATEX, homoglpyhs are not usable in
the listing environment, while the hidden box is not applicable in captions or section
titles. In general, such restrictions are difficult to predict given the large number of
possible LATEX packages. Instead of solving such shortcomings in the problem space
by tediously adjusting the transformations to each special case, we resort to a more
generic approach and transfer problem-space constraints back to the feature space. The

71

A Subverting Automatic Paper-Reviewer Assignment

transformers in Z first collect words that cannot be handled, which are then blocked
from being sampled during candidate generation in F .

Surrogate models. We introduce a second extension for the black-box scenario. In
this scenario, the adversary has no access to the victim model. Still, she can leverage
public information about the program committee, collect papers from its members,
and assemble a dataset similar to the original training data. This allows her to train
a surrogate model that enables preparing an adversarial paper without access to the
assignment system. This strategy has been successfully used for attacks against neural
networks [35]. However, in our case, this strategy is hindered by a problem: LDA models
suffer from high variance [36, 37]. Even if the adversary had access to the original data,
she would still get different models with varying predictions. This makes it unlikely
that an adversarial paper computed for one model transfers to another.

As a remedy, we propose to use an ensemble of surrogate models to better ap-
proximate the space of possible LDA models. We run the attack simultaneously for
multiple models until being successful against all surrogates. To this end, we extend
the feature-space attack to multiple target models: (i) we create candidates for each
surrogate model independently and consider the union over all surrogates and (ii) we
compute the loss as the sum of individual losses over all surrogates. Intuitively, this in-
creases the robustness of an adversarial paper and, consequently, improves the success
rate that the attack transfers to the unknown victim model.

4 Evaluation

In the following, we evaluate the efficacy of the proposed approach to prepare ad-
versarial papers. To this end, we simulate the automatic paper-reviewer assignment
process of a real conference with the full program committee (PC). We consider two
different scenarios: First, we demonstrate how a white-box attacker with full-knowledge
about the target system can select and reject reviewers for a submission. Second, we
consider a black-box adversary with only limited knowledge and no access to the trained
assignment system. We show that such an adversary can generate effective surrogate
models by exploiting public knowledge about the conference. Finally, we verify that
the manipulated papers are plausible and preserve the semantics of the text.
Setup. We use Autobid [6] as an open-source realization of the TPMS concept [7].
We simulate an automatic assignment for the 43rd IEEE Symposium on Security and

72

4 Evaluation

Privacy with the full PC and set the paper load Lx = 5 (i. e., assign each submission
to five reviewers). In contrast to the real conference, we assume a fully automated
assignment without load balancing and conflicts (see Section 7). As we do not have
access to the original submissions, we use the accepted papers as substitutes. In total,
we find 32 papers on the arXiv e-Print archive with LATEX source, which we use for our
evaluation.

The PC consists of 165 persons. For each PC member, we construct an archive
Ar of papers representative for the person’s expertise by crawling their Google Scholar
profile. We select 20 paper for each reviewer and compile the corpus as the union of these
archives. To simulate a black-box scenario, we additionally generate surrogate corpuses
that overlap with the original data between 0% and 100%. Appendix A describes this
process in detail. In all cases, we train Autobid with the default configuration on a
given corpus.

For each attack, we perform a grid search on its parameters to realize a reasonable
trade-off between efficacy and efficiency. We start by relaxing any constraints on δ

(Lmax
1 =∞ and Lmax

∞ =∞) and run the attack with at most S = 8 transitions between
the feature space and problem space (see Appendix B for details). All experiments are
performed on a server with 256 GB RAM and two Intel Xeon Gold 5320 CPUs.

Performance measures. We use three measures to evaluate the attack’s performance.
First, we consider an adversarial paper z′ to be successful if the constraints from Equa-
tion 5 are fulfilled. Second, to quantify modifications to the submission, we use two
standard measures: L1 and L∞ norm. Given the modified word counts x′ := x + δ,
these are computed as

||δ||1 =
∑
i

|δi| and ||δ||∞ = max
i
|δi| . (10)

L1 is the absolute number of modified words and provides a general overview on the
total amount of modifications. Intuitively, we are interested in minimizing L1 to make
an attack less suspicious. Similarly, L∞ is the maximum change in a single dimension
(i.e., a single word) and ensures that a single word is not included too frequently. Third,
we assess the semantics and plausibility of the manipulated papers in a user study with
security researchers.

73

A Subverting Automatic Paper-Reviewer Assignment

Table 2: Feature-space search. We compare our attack with two baselines: hill climbing
and morphing. For this comparison, we consider three attack objectives: (1) selecting, (2)
rejecting, and (3) substituting of reviewers.

Selection Rejection Substitution

L1 norm
Our attack 704 ×1.00 1032 ×1.00 2059 ×1.00
Hill climbing 1652 ×2.35 2255 ×2.18 5526 ×2.68
Morphing 3059 ×4.35 - × - - × -

L∞ norm
Our attack 17 ×1.00 43 ×1.00 62 ×1.00
Hill climbing 38 ×2.22 44 ×1.02 98 ×1.58
Morphing 45 ×2.63 - × - - × -

4.1 White-box Scenario

In our first scenario, we focus on a white-box scenario and consider three attack
objectives: (1) selection, (2) rejection, and (3) substitution of a reviewer. For these
objectives, we focus on reviewers that are already “close” to a submission in the as-
signment system. For example, a paper on binary analysis would raise suspicion if it
would get assigned to a reviewer with a cryptography background.

We use the initial assignment scores of the submission as a proxy to simulate this
setting. We determine potential reviewers by computing the ranking for the unmodified
submission and consider the 10 reviewers with highest scores. To study objective (1),
we sample reviewers from the ranks 6–10 and attempt to get them assigned to the
submission. Analogously, for objective (2), we select reviewers from the ranks 1–5 and
aim at eliminating their assignment. Finally, for objective (3), we first select a reviewer
for removal and then a counterpart for selection. We repeat this procedure 100 times
with random combinations of papers and reviewers for each objective. Moreover, to
account for the high variance of LDA, we train the topic model 8 times and average
results in the following.

Feature-space search. We start our evaluation by examining the feature-space search
of our attack in detail. For this experiment, we consider format-level transformations

74

4 Evaluation

that can realize arbitrary changes. Other transformations are evaluated later when we
investigate the problem-space side of our attack.

The results of this experiment are presented in Table 2 and further detailed in Ap-
pendix C. We observe that our approach is very effective: 99.7 % of the attacks finish
successfully with a median run-time of 7 minutes. The number of performed changes
shows high variance, ranging between 9 and 22,621 adapted words. Despite this broad
range, however, the average manipulation involves only between 704 and 1,032 words
for objectives (1) and (2), respectively. For reference, an unmodified submission con-
tains 7,649 words on average, so that the necessary changes for preparing an adversarial
paper amount to 9% and 13% of the words.

Among the three objectives, we see a trend that selecting a reviewer is more effi-
cient than rejecting one. Rejected reviewers have—per construction—a high assignment
score, and hence share many topics with nearby reviewers. In contrast, for selected re-
viewers it is easier to determine topics with less side effects. The third scenario, where
we both reject and select a reviewer, is naturally the hardest case. Generally, we ob-
serve that topic models based on LDA are comparatively robust against adversarial
noise, in relation to neural networks which can be deceived into a misclassification by
changing only a few words [e.g., 27, 24].

Baseline experiments. To put these numbers into perspective, we examine two base-
lines. First, we implement a hill climbing approach that directly manipulates the topic
vector of a submission (cf. Equation 6) by sampling words from the topic-word distribu-
tions associated with a reviewer. For the second baseline, we consider an approach that
morphs a target submission with papers that already contains the correct topic-word
distribution. To find these papers, we compute all assignments of the training corpus
and identify submissions to which the target reviewer is assigned. We then repeatedly
select words from these submissions and expand our adversarial paper until we reach
the target. In rare cases, we could not find papers in which the reviewer is highly rated.
We exclude such cases from our experiments.

Considering all three objectives, the hill climbing approach shows a lower success
rate: Only 92.2 % of the papers are successfully manipulated. The failed submissions
either reach the maximum number of 1,000 iterations or get stuck in a local minimum.
In successful cases, the attacker needs to introduce more than twice as many changes
compared to our attack and the median L1 norm increases from 704–2,059 to 1,652–

75

A Subverting Automatic Paper-Reviewer Assignment

0.25 0.5 1 2 4

Attack Budget (σ)

0%

20%

40%

60%

80%

100%
S

u
cc

es
s

R
at

e

1 2 4 8 16

Switches (S)

Text + Encoding + Format

Figure 4: Feature-problem-space attack. We simulate the attack with differently scaled
attack budgets σ (left) and S = 8 switches. We repeat the experiment (right) with the
base budget σ = 1 and vary S. For both cases, we randomly select 100 targets from all
three objectives that require ≤ 1, 000 changes in F . We report the mean success rate over 8
repetitions.

5,526 words. For the morphing baseline, the attack is successful in only 91.1 % of the
cases and again needs to introduce significantly more words. We find that the median
L1 norm increases by a factor of 4.35 with a maximum of 29,291 modified words for a
single attack.

Generalization of attack. To investigate the generalization of our attack, we repeat
this experiment for a second real conference. In particular, we simulate the assignment
of the 29th USENIX Security Symposium with 120 reviewers. We consider 24 original
submissions and construct targets as before. Results of this experiment are presented
in Appendix D. We observe a similar performance across all three objectives, indicating
the general applicability of our attack.

Scaling of target reviewers. Next, we scale the attack to larger sets of target re-
viewers and consider different combinations for selecting, rejecting, and substituting
reviewers. We allow an attacker to select up to five target reviewers, which is equivalent
to replacing all of the initially assigned reviewers. Furthermore, we allow the rejection
of up to two reviewers. We focus again on close reviewers and randomly select 100 sets
of targets per combination.

76

4 Evaluation

The results are summarized in Appendix E. The attack remains effective and we can
successfully craft adversarial papers in most of the cases. We observe a clear trend that
with increasing numbers of target reviewers, we need to perform more changes to the
submission. For example, to select all five reviewers, in the median we need to modify
5,968 words. This is expected: we have to move the submission in the topic space from
the initially-assigned reviewers to the targeted ones. By adding more reviewers, we
include more constraints which results in a significant amount of modifications.

All transformations. So far, we have focused on format-level transformations to re-
alize manipulations. These transformations exploit intrinsics of the submission format,
which effectively allows us to make arbitrary changes to a PDF file. An attacker likely
has access to similar transformations in any practical setting. In fact, robust parsing
of PDF files has been shown to be a hard problem [e.g., 38]. However, we believe it
is important for an attacker to minimize any traces and consider different classes of
transformations as introduced in Section 3.2.

(a) Attack budget For this experiment, we introduce an attack budget to describe
the maximum amount of allowed modifications for a given transformation. This budget
trades off the ability of a transformation to introduce changes with their conspicuous-
ness, since too many (visible) modifications will likely lead to a rejected submission.
In particular, we assume a maximum of 25 real and 5 adaptive added BibTEX entries,
at most 25 replacements of words with synonyms, no more than 20 spelling mistakes,
and up to 10 requested words on average through a text from a language model. In
Section 4.4, we validate these parameters and assess if the resulting adversarial papers
are unobtrusive to human observers.

As a result of the attack budget, we cannot realize arbitrary modifications, since their
total amount is restricted. To study this in more detail, we consider the success rate
as a function of the attack budget scaled with a factor σ between 0.25 and 4. During
the attack, we split the budget equally across 8 feature-problem-space transitions. We
require that targets are feasible with this budget and randomly select 100 targets from
the three attack objectives that require≤ 1, 000 changes in F . Finally, we consider three
different configurations: (1) text-level transformations, (2) text-level and encoding-level
transformations, and (3) text-level, encoding-level, and format-level transformations
combined. We do not restrict the budget for format-level transformations as these
transformations are generally not visible.

77

A Subverting Automatic Paper-Reviewer Assignment

The results are shown on the left side of Figure 4. For text-level transformations
and text-level & encoding-level transformations, we see an increase in the success rate
when the attack budget grows. For the base budget (σ = 1), 40.75% of the adversarial
papers can be prepared with text-level transformations only. That is, no changes in
the format and encoding are necessary for manipulating the reviewer assignment. This
can be further improved by increasing the budget, for instance, 67.13% of the papers
become adversarial by scaling it to 4. For smaller budgets, however, we observe that
there is often not enough capacity to realize the required modifications. Still, using
format-level transformations improves the success rate to 100% in almost all cases. In
rare case, we observe that the attack gets stuck in a local minima. Interestingly, this
is more likely with larger budgets. In these cases, the attack makes bigger steps per
iteration which introduces more side effects. From the perspective of an attacker, this
can be resolved by either increasing the number of switches or reducing the budget.

(b) Problem-feature-space transitions. To better understand the influence of the
alternating search on the success rate of our attack, we conduct an additional ex-
periment. In particular, we simulate our attack for different numbers of transitions
S ∈ {1, 2, 4, 8, 16} between the problem space and the feature space. We consider the
same targets as before and set the attack budget to σ = 1.

The results of this experiment are depicted on the right side of Figure 4. Increasing
the number of transitions has a significant effect on the success rate. For all configura-
tions, we see a steady improvement when the number of problem-feature-space transi-
tions increases. Notably, even the format-level transformations require multiple transi-
tions in some cases. The success rate increases from 77.13%—with no transitions—to
100% when increasing S. By alternating between F and Z we share constraints between
problem and feature space to find modifications that can be realized in the problem
space. This further underlines that it is beneficial and in fact necessary to considreser
both spaces together.

4.2 Black-box Scenario

In practice, an attacker typically does not have unrestricted access to the target
system. In the following, we therefore assume a black-box scenario and consider an
adversary with only limited knowledge. In particular, this adversary cannot access
the assignment system and its training data. Instead, we demonstrate that she could

78

4 Evaluation

1 2 3 4 5 6 7 8

Ensemble Size

0%

20%

40%

60%

80%

100%

S
u

cc
es

s
R

at
e

Selection

Rejection

Substitution

Figure 5: Surrogate ensemble sizes. We simulate the attack with varying numbers of
surrogate models. For each ensemble size, we report the mean success rate over 8 target
systems with 100 targets each for all three attack objective.

leverage her knowledge about the program committee and construct a surrogate dataset
to train her own models for preparing adversarial papers.

The assignment systems AutoBid and TPMS do not specify how the corpus for
training a topic model is constructed. They only require that the selected publications
are representative of the reviewers. Hence, even if we do not know the exact composition
of the training data, we can still collect a surrogate corpus of representative data with
public information, such as recent papers of the PC members, and transfer our attack
between models. In practice, the success of this transfer depends on two factors: (a)
the stability of the surrogate models and (b) the overlap of publications between the
original training data and the surrogate corpus.

Stability of surrogate models. The training of LDA introduces high variance [36,
37], so that adversarial papers naïvely computed against one model will likely not
transfer to another. To account for this instability, we approximate the model space and
consider an ensemble of surrogate models. That is, we run our attack simultaneously
against multiple surrogate models trained on the same data. We focus on format-level
transformations and repeat the attacks for all three objectives. We vary the number
of models in the ensemble from 1 to 8 and consider an overlap of 70% between the
underlying surrogate corpus and the original training data.

Figure 5 show the results of this experiment. Across all objectives, we see an im-
provement of the success rate when increasing the number of surrogate models. This is

79

A Subverting Automatic Paper-Reviewer Assignment

0 20 40 60 80 100

Success of Adversarial Paper (yes/no)

0

1

2

3

4

5

6

7

A
ss

ig
n

m
en

t
S

y
st

em

Figure 6: Transferability. We visualize the transferability of 100 adversarial paper among 8
target assignment systems. Attacks were performed with an ensemble size of 8 and we focus
on the selection objective. Adversarial papers where the unmodified submission is already
successful are displayed in light blue.

intuitive: the adversarial papers are optimized against all models and thus more likely
to transfer to other models. This robustness, however, comes at a cost and the number
of modifications increases as well. The median L1 norm increases from 1,990 to 7,556
when considering 8 instead of a single surrogate model (see Appendix F).

As a result, an adversary in the black-box scenario must find a trade-off: If she needs
a successful attack with high probability, she must sacrifice detectability and modify
a large number of words. If, on the other end, she only wants to increase her chances
for a specific assignment, she can operate without an ensemble and adapt only a few
words.

To further study the transferability of our attack, we sample 100 target reviewer from
the median ranking computed over 8 assignment systems and simulate the attack with
an ensemble of 8 surrogates. Figure 6 visualizes how the resulting adversarial papers
transfer among the target systems. 96% of the papers are successful against four or
more target systems and 34 % are successful considering all 8 systems.

Overlap of surrogate corpus. To understand the role of the surrogate corpus, we
finally repeat the previous experiment with varying levels of overlap. Surprisingly, the
attack remains robust against variations in training data. The success rate only fluc-
tuates slightly: 78.0% (100% overlap), 80.0% (70% overlap), 79.6% (30% overlap), and
82.8% (0% overlap). To explain this, we compute the cross-entropy of the reviewer-

80

4 Evaluation

to-words distributions ϕ̂r for models trained on training data with different overlaps.
We observe that the cross-entropy between models trained on the same dataset (i.e.,
100% overlap) is in the same range compared to models trained on different data (cf.
Appendix G for details). As LDA models trained on the same corpus already vary sig-
nificantly, our attack seeks a robust solution that transfers well if the surrogate models
have less overlap with the original training data.

4.3 Plausibility and Semantics

Finally, we empirically verify if the adversarial modifications are (a) plausible and (b)
preserve the semantics of the text.

Study design. As dataset, we use the combined set of original and adversarial papers
from our evaluation. In total, we select seven original papers and their adversarial
counterparts, ensuring varying topics and transformations. The attack budget is σ =

1.00. Due to a limited number of participants, we focus on visible transformations (i.e.
encoding-level and text-level) that a reviewer could detect. Each participant selects
(“bids on”) one paper. This selection cannot be changed afterwards and participants are
secretly assigned either to the adversarial or to the unmodified version. Each participant
will only check one paper to avoid potential bias and fatigue effects.

We design the review process along two phases. Our methodology here is inspired by
the work from Bajwa et al. [39] and Sullivan et al. [40]. In the first phase, we request
participants to write a mini-review (as a proxy task) for a given paper. In the second
phase, we ask if they think the paper has been manipulated. Importantly, the answers of
phase 1 cannot be changed. This two-phase separation allows us to observe two factors:
First, we can analyze how suspicious adversarial papers are to an unaware reader.
Second, once the reader is informed, we can learn about which transformations are
noticeable and make our attack detectable. In each phase, we provide a template with
questions on a numerical scale from 1–5, together with free text fields for justifying the
rating. Participants are debriefed finally. We obtained approval from our institution’s
Institutional Review Board (IRB) and our study protocol was deemed to comply with
all regulations.

Results. We recruited 21 security researchers (15× PhD students, 4× postdocs, 1×
faculty, 1× other). All participants are familiar with the academic review process but
have different review experience (7× have not written a review before, 4× between 1-2

81

A Subverting Automatic Paper-Reviewer Assignment

Phase 1: Review
How do you rate the overall organization of the paper?

How do you rate the comprehensibility of the paper?

How do you rate the literature quality and bibliography?

How do you rate the overall writing quality?

How do you rate the formatting and style?

1 2 3 4 5
Low HighSpecified rating

Phase 2: Manipulation Check
How likely is the paper manipulated by an automated system?

Figure 7: Ratings of benign and adversarial papers. For each question, the upper
boxplot shows the ratings from the benign papers, the lower boxplot from the adversarial
papers.

reviews, 6× between 3-10, and 4× at least 10 reviews). The participants reviewed a
total of 12 adversarial and 9 original submissions.

Figure 7 summarizes the results. Benign and adversarial submissions are rated similar
across all review questions. No participant was certain that a paper was manipulated
(i. e., gave it a ranking of 5) and only a single of the 12 manipulated submissions was
flagged as suspicious with a rating of 4. This was justified with missing references and
redundancy in the text—neither of which were introduced by our attack. Interestingly,
this reviewer did notice the spelling mistake and language model transformer (when
asked about the writing quality), but did not attribute this as a sign for manipulation.
This is opposed to two false positive ratings of benign papers, which results in a overall
detection precision of 33% with a recall of only 8%. This highlights the difficulty to
detect any introduced modifications.

82

5 Discussion

Finally, we check that the semantics of the papers are not changed. With the limited
attack budget, only small, bounded changes are made to a paper. This is further sup-
ported by the organization and comprehensibility ratings in Figure 7, which are similar
between manipulated and benign submissions.

5 Discussion

Our work reveals a notable vulnerability in systems for automatic paper-reviewer
assignment. In the following, we discuss further aspects of our findings, including lim-
itations, defenses, and the implications and benefits of an attack.
Committee size. We simulate an automatic assignment for two large security confer-
ences with committees composed of 120 and 165 reviewers, respectively. Considering
the current trend, it is likely that these conferences will continue to grow larger. In
the following, we want to understand how an increased set of concurring reviewers
impacts the attack. Therefore, we consider committees with 100–500 reviewers sam-
pled from a pool of 528 reviewers (taken from USENIX and S&P committees between
2018–2022) with a total of 11,770 papers in the underlying corpus. Appendix H shows
the number of required changes as a function of the committee size. Across the three
objectives—selection, rejection, and substitution—we observe only a minor impact on
the attack. The attack remains successful with a success rate between 98.00% – 98.92%
and the number of required modifications remains largely unaffected. For the smallest
committee considered (with 100 reviewers), we observe a slightly larger uncertainty.
Intuitively, in this case the assignment is more dependent on the particular choice of
the committee which gets averaged out for larger committees.

Load balancing and conflicts. Our attack focuses on the manipulation of assignment
scores and assumes a direct matching from PC members to submissions. For a complete
end-to-end attack, an attacker would also need to take load balancing of submissions
and reviewer conflicts into account. For example, the target submission might compete
with another paper on the same topic and get a different assignment despite a successful
manipulation of the topic model.

Unfortunately, these obstacles are hard to model, as conflicts and the other submis-
sions are typically not known to the adversary. Instead, we can generally improve the
resilience of our attack. By increasing the margin Φ of the target reviewer to others,
we can make a matching assignment more likely. Interestingly, in this case, conflicts

83

A Subverting Automatic Paper-Reviewer Assignment

can be even seen as a simplification: if a target reviewer is the top candidate among
all reviewers R, she is also the top candidate for only a subset of reviewers (i.e., all
unconflicted reviewers).

To further understand the role of this margin, we simulate the selection of a reviewer
for different values of Φ ∈ {0, 0.1, 0.2} and varying numbers of concurring submissions
between 200 and 1,000 (sampled from a hold-out corpus). We model the full assignment
to maximize similarity subjected to load constraints as introduced in Section A. We as-
sume Lx = 5 reviews per paper and that each reviewer is assigned Lr = 10 submissions.
Appendix I shows the attack’s success rate as a function of the number of concurring
submissions. The attack remains effective but we observe a slight downward trend of its
success rate. This is expected: with increasing number of submissions, there exist more
similar paper that compete for a given reviewer. An attacker can account for this by
(1) increasing the margin and, as the attack is undetectable (in general), an attacker
could (2) further increase her chances by repeating the attack (e.g., resubmitting a
rejected paper).

Paper corpus. We select accepted papers from IEEE S&P 2022 as basis for our evalua-
tion. This selection leads to a potential bias, as rejected submissions are not considered.
However, we do not expect any impact on our results. Papers follow a common struc-
ture, so that our transformations in LATEX are applicable in general. The feature-space
algorithm works on bag-of-words vectors, which is just another representation for any
paper. In Appendix D, we test our attack with papers from the 29th USENIX Security
Symposium and find no significant difference in our results.

Countermeasures and defenses. Our results show that systems based on topic
models such as LDA have relatively strong robustness towards adversarial noise. This
stands in stark contrast to neural networks, where changing only a few words can
already lead to a misclassification [e.g., 27, 24]. However, our work also demonstrates
that LDA-based systems are still vulnerable to adversarial examples and there is a need
for appropriate defenses.

Unfortunately, text-level manipulations are challenging to fend off, as they can only
be spotted on the semantic level. In our user study, participants often struggled to
differentiate adversarial modifications from benign issues and an adversary can al-
ways manually rewrite an adversarial paper to further reduce the detection probability.
Moreover, even completely machine generated text—such as done with our OPT-based

84

5 Discussion

transformer—is often indistinguishable from natural text [41, 42]. The underlying mod-
els are evolving rapidly and current state-of-the-art models such as InstructGPT [43]
and Galactica [44] are now actively used for academic writing.

For encoding-level and format-level changes, however, defenses are feasible: The root
cause of these manipulations is the disparity between human perception and parser-
based text extraction. Thus, an effective defense needs to mimic a human reader as
close as possible similar to defenses recently proposed for adversarial examples in other
domains [e.g. 45]. To evaluate this defense, we replace the parser-based text extraction
(pdftotext) with an optical character recognition (OCR) (tesseract). We observe
that for the modified system the encoding-level and format-level attacks now completely
fail, while the performance of the text-level attacks remains unaffected. At the same
time, however, we observe a large increase in runtime. Compared to the parser-based
extraction, OCR is orders of magnitude slower and needs an average time of 56 s for a
single submission compared to 0.14 s with conventional text extraction.

Other countermeasures can be more tailored to the individual transformations: Flag
usage of unusual font encodings to prevent homoglyph attacks, remove comment boxes
and non-typeset pages in a preprocessing step, or automatically verify the bibliography
entries using online bibliography databases.

Benefits and implications. Manipulating a submission comes with a considerable
risk if the attack is detected. This can range from a desk reject over a submission ban at
a specific venue to permanent damage of the authors’ scientific reputation [46]. Never-
theless, recent incidents show that academic misconduct happens. Dishonest authors,
for example, leveraged synthetic texts to increase the paper output [47]. Moreover,
collusion rings exist where authors and reviewers collaborate to accept each other’s
papers [48]. Automated assignment techniques can raise the bar for dishonest collabo-
rations considerably [49], yet our work shows that these techniques need to be imple-
mented with care. Apart from collusion rings, dishonest authors can also work alone:
They can try to promote an unfamiliar reviewer who might overlook paper issues and
thus more likely submit a positive review.

We believe that dishonest authors more likely risk deniable manipulations such as a
few spelling mistakes or additional references. Our evaluation shows this is sometimes
already enough, for example, to promote an unfamiliar reviewer. As the line between
adversarial and benign issues in a paper is often not clear, such an attack can be hard to

85

A Subverting Automatic Paper-Reviewer Assignment

discover. All in all, the automatic assignment of papers enables not only manipulations
that undermine the entire reviewing process, but also small-scale attacks in which
assignments are tweaked by a few deniable changes.

6 Related Work

Our attack touches different areas of security research. In the following, we examine
related concepts and methods.
Adversarial learning. A large body of work has focused on methods for creating
adversarial examples that mislead learning-based systems [50]. However, most of this
work considers attacks in the image domain and assumes a one-to-one mapping between
pixels and features. This assumption does not hold in discrete domains, leading to
the notion of problem-space attacks [34, 51]. Our work follows this research strand
and introduces a new hybrid attack strategy for operating in both the feature space
and problem space. Furthermore, we examine weak spots in text preprocessing, which
extend the attack surface for adversarial papers. These findings complement prior work
advocating that the security of preprocessing in machine learning needs be considered
in general [52].

Table 3 summarizes prior work on misleading text classifiers. While we build on
some insights developed in these works, text classification and paper assignment differ
in substantial aspects: First, the majority of prior work focuses on untargeted attacks
that aim at removing individual features. In our case, however, we have to consider
a targeted attack where an adversary needs to specifically change the assignment of
reviewers. Second, prior attacks often directly exploit the gradient of neural networks
or compute a gradient by using word importance scores. Such gradient-style attacks
are not applicable to probabilistic topic models.

In view of these differences, our work is more related to the attack from Zhou et
al. [23] which studies the manipulation of LDA. The authors show that an evasion is
NP-hard and present an attack to promote and demote individual LDA topics. For our
manipulation, however, we need to adjust not only individual topics but the complete
topic distribution as well as consider side effects with concurring reviewers.

Attacks on assignment systems. Finally, another strain of research has explored
the robustness of paper-reviewer assignment systems. Most of these works are based
on content-masking attacks [33, 57], which use format-level transformation to exploit

86

7 Conclusion

Table 3: Overview of related attacks against text classifiers.

Perturbation Constr. Attack

Paper C
ha

r

W
or

d

Se
nt

en
ce

Fo
rm

at

Se
m

an
tic

s

Pl
au

sib
ili

ty

U
nt

ar
ge

te
d

Ta
rg

et
ed

Classifier

This work 3 3 3 3 Assign.
Alzantot et al. [53] 3 3 NN
Ebrahimi et al. [54] 3 3 NN
Eger et al. [31] 3 3 NN
Gao et al. [27] 3 3 NN
Iyyer et al. [55] 3 3 NN
Jin et al. [25] 3 3 NN
Li et al. [24] 3 3 NN,LR
Liu et al. [28] 3 3 NN
Papernot et al. [56] 3 NN
Ren et al.[26] 3 3 NN

the discrepancy between displayed and extracted text. More specifically, Markwood
et al. [33] and Tran and Jaiswal [57], similar to our work, target the paper-reviewer
assignment task. Their attack is evaluated against Latent Semantic Indexing [58]—
that is not used in real-world systems like TPMS. Although Tran and Jaiswal [57]
recognize the shortcomings of format-level transformations, they do not explore text-
level transformations or the interplay between the problem space and feature space of
topic models.

Complementary to our work, a further line of research focuses on the collusion of re-
viewers. These works have analyzed semi-automatic paper matching systems under the
assumption that malicious researchers can manipulate the paper assignment by care-
fully adjusting their paper biddings. Jecmen et al. [8] propose a probabilistic matching
to decrease the probability of a malicious reviewer to be assigned to a target submission,
while Wu et al. [9] tries to limit the disproportional influence of malicious biddings.

7 Conclusion

In this paper, we demonstrate that current systems for automatic paper-reviewer
assignments are vulnerable and can be misled by adversarial papers. On a broader

87

A Subverting Automatic Paper-Reviewer Assignment

level, we develop a novel framework for constructing adversarial examples in discrete
domains through joint optimization in the problem space and feature space. Based
on this framework, we can craft objects that satisfy real-world constraints and evade
machine-learning models at the same time.

In summary, our work demonstrates a significant attack surface of current matching
systems and motivates further security analysis prior to their deployment. As a result,
we have informed the developers of TPMS and Autobid about our findings, as part of
a responsible disclosure process.

Acknowledgments

We thank our shepherd and reviewers for their valuable comments and suggestions. We
also thank Ajeeth Kularajan, Andreas Müller, Jonathan Evertz, and Sina Wette for
their assistance as well as Charlotte Schwedes and Annabelle Walle for their support
with the user study. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC
2092 CASA – 390781972), the German Federal Ministry of Education and Research
under the grant BIFOLD23B, and the European Research Council (ERC) under the
consolidator grants MALFOY (101043410) and RS3 (101045669). Moreover, this work
was supported by a fellowship within the IFI program of the German Academic Ex-
change Service (DAAD) funded by the Federal Ministry of Education and Research
(BMBF).

88

7 Conclusion

References

[1] Ananta Soneji, Faris Bugra Kokulu, Carlos Rubio-Medrano, Tiffany Bao, Ruoyu
Wang, Yan Shoshitaishvili, and Adam Doupé. “Flawed, but like democracy we
dont have a better system”: The Experts Insights on the Peer Review Process of
Evaluating Security Papers. In IEEE Symposium on Security and Privacy (S&P),
2022.

[2] Neil Lawrence and Corinna Cortes. The NIPS Experiment. Post on personal blog,
2014.

[3] Hannah Bast. How Objective is Peer Review: The ESA Experiment. Blog post
on CACM, 2018.

[4] Davide Balzarotti. System Security Circus. Post on personal blog, 2020.

[5] Hsuan-Tien Lin, Maria Florina Balcan, Raia Hadsell, and MarcAurelio Ranzato.
What we learned from NeurIPS 2020 reviewing process. Blog post on Medium,
2020.

[6] Bryan Parno. Autobid. Public GitHub Repository.

[7] Laurent Charlin and Richard Zemel. The Toronto Paper Matching System: An
Automated Paper-Reviewer Assignment System. In International Conference on
Machine Learning (ICML), 2013.

[8] Steven Jecmen, Hanrui Zhang, Ryan Liu, Nihar B. Shah, Vincent Conitzer, and
Fei Fang. Mitigating Manipulation in Peer Review via Randomized Reviewer
Assignments. In Advances in Neural Information Processing Systems (NeurIPS),
2020.

[9] Ruihan Wu, Chuan Guo, Felix Wu, Rahul Kidambi, Laurens van der Maaten,
and Kilian Q. Weinberger. Making Paper Reviewing Robust to Bid Manipulation
Attacks. In International Conference on Machine Learning (ICML), 2021.

[10] Xiang Liu, Torsten Suel, and Nasir Memon. A Robust Model for Paper Reviewer
Assignment. In ACM Conference on Recommender Systems (RecSys), 2014.

[11] Xinlian Li and Toyohide Watanabe. Automatic Paper-to-reviewer Assignment,
based on the Matching Degree of the Reviewers. In International Conference in
Knowledge Based and Intelligent Information and Engineering Systems (KES),

89

https://inverseprobability.com/2014/12/16/the-nips-experiment
https://github.com/ad-freiburg/esa2018-experiment/blob/master/BLOGPOST.md
https://github.com/ad-freiburg/esa2018-experiment/blob/master/BLOGPOST.md
http://s3.eurecom.fr/~balzarot/notes/top4_2020/
https://neuripsconf.medium.com/what-we-learned-from-neurips-2020-reviewing-process-e24549eea38f
https://github.com/parno/autobid

A Subverting Automatic Paper-Reviewer Assignment

2013.

[12] Ivan Stelmakh, Nihar B. Shah, and Aarti Singh. PeerReview4All: Fair and Accu-
rate Reviewer Assignment in Peer Review. In Conference on Algorithmic Learning
Theory (ALT), 2019.

[13] Cheng Long, Raymond Chi-Wing Wong, Yu Peng, and Liangliang Ye. On Good
and Fair Paper-Reviewer Assignment. In IEEE International Conference on Data
Mining (ICDM), 2013.

[14] Surajit Chaudhuri et al. Conference Management Toolkit (CMT).

[15] Eddie Kohler et al. HotCRP Conference Review Software.

[16] Julie Beth Lovins. Development of a Stemming Algorithm. Mechanical Translation
and Computational Linguistics, 1968.

[17] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with
Python. O’Reilly, 2009.

[18] David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet Allocation. In
Advances in Neural Information Processing Systems (NeurIPS), 2002.

[19] Matthew D. Hoffman, David M. Blei, and Francis R. Bach. Online Learning
for Latent Dirichlet Allocation. In Advances in Neural Information Processing
Systems (NeurIPS), 2010.

[20] William M. Darling. A Theoretical and Practical Implementation Tutorial on
Topic Modeling and Gibbs Sampling. In Annual Meeting of the Assoc. for Com-
putational Linguistics: Human Language Technologies (HLT), 2011.

[21] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with
Large Corpora. In LREC Workshop on New Challenges for NLP Frameworks,
2010.

[22] Camillo J Taylor. On the Optimal Assignment of Conference Papers to Reviewers.
Technical report, 2008.

[23] Qi Zhou, Haipeng Chen, Yitao Zheng, and Zhen Wang. EvaLDA: Efficient Evasion
Attacks Towards Latent Dirichlet Allocation. In AAAI Conference on Artificial
Intelligence (AAAI), 2021.

90

https://cmt3.research.microsoft.com
https://github.com/kohler/hotcrp

7 Conclusion

[24] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. TextBugger: Generat-
ing Adversarial Text Against Real-world Applications. In Symposium on Network
and Distributed System Security (NDSS), 2019.

[25] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT Really
Robust? A Strong Baseline for Natural Language Attack on Text Classification
and Entailment. In AAAI Conference on Artificial Intelligence (AAAI), 2020.

[26] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating Natural Lan-
guage Adversarial Examples through Probability Weighted Word Saliency. In
Annual Meeting of the Assoc. for Computational Linguistics (ACL), 2019.

[27] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-Box Generation of
Adversarial Text Sequences to Evade Deep Learning Classifiers. In IEEE Security
and Privacy Workshops (SPW), 2018.

[28] Hui Liu, Yongzheng Zhang, Yipeng Wang, Zheng Lin, and Yige Chen. Joint
Character-Level Word Embedding and Adversarial Stability Training to Defend
Adversarial Text. In AAAI Conference on Artificial Intelligence (AAAI), 2020.

[29] The Most Common English Misspellings. Blogpost on Lexico, 2021.

[30] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuo-
hui Chen, Christopher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, and
other. OPT: Open Pre-trained Transformer Language Models. Computing Re-
search Repository (CoRR), 2022.

[31] Steffen Eger, Gözde Gül Sahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz,
Mohsen Mesgar, Krishnkant Swarnkar, Edwin Simpson, and Iryna Gurevych. Text
Processing Like Humans Do: Visually Attacking and Shielding NLP Systems. In
Conference of the North American Chapter of the Assoc. for Computational Lin-
guistics: Human Language Technologies, (NAACL-HLT), 2019.

[32] Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad
Characters: Imperceptible NLP Attacks. In IEEE Symposium on Security and
Privacy (S&P), 2022.

[33] Ian Markwood, Dakun Shen, Yao Liu, and Zhuo Lu. PDF Mirage: Content Mask-
ing Attack Against Information-Based Online Services. In USENIX Security Sym-
posium, 2017.

91

https://www.lexico.com/grammar/common-misspellings

A Subverting Automatic Paper-Reviewer Assignment

[34] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
Intriguing Properties of Adversarial ML Attacks in the Problem Space. In IEEE
Symposium on Security and Privacy (S&P), 2020.

[35] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability
in Machine Learning: From Phenomena to Black-Box Attacks using Adversarial
Samples. Computing Research Repository (CoRR), 2016.

[36] Amritanshu Agrawal, Wei Fu, and Tim Menzies. What is Wrong with Topic Mod-
eling? And how to Fix it Using Search-Based Software Engineering. Information
and Software Technology, 2018.

[37] Mika V. Mäntylä, Maëlick Claes, and Umar Farooq. Measuring LDA Topic Sta-
bility from Clusters of Replicated Runs. In International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2018.

[38] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar, and
Mu Zhang. Extract Me If You Can: Abusing PDF Parsers in Malware Detec-
tors. In Symposium on Network and Distributed System Security (NDSS), 2016.

[39] Nida ul Habib Bajwa, Markus Langer, Cornelius J König, and Hannah Honecker.
What Might get Published in Management and Applied Psychology? Experimen-
tally Manipulating Implicit Expectations of Reviewers Regarding Hedges. Scien-
tometrics, 2019.

[40] Sherry E Sullivan, Yehuda Baruch, and Hazlon Schepmyer. The Why, What, and
How of Reviewer Education: A Human Capital Approach. Journal of Management
Education, 2010.

[41] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and other. Language Models are Few-Shot Learners. Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[42] Jaron Mink, Licheng Luo, Natã M. Barbosa, Olivia Figueira, Yang Wang, and
Gang Wang. DeepPhish: Understanding User Trust Towards Artificially Gener-
ated Profiles in Online Social Networks. In USENIX Security Symposium, 2022.

[43] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, and other.

92

7 Conclusion

Training Language Models to Follow Instructions with Human Feedback. Com-
puting Research Repository (CoRR), 2022.

[44] Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony
Hartshorn, Elvis Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic.
Galactica: A Large Language Model for Science. Computing Research Repository
(CoRR), 2022.

[45] Thorsten Eisenhofer, Lea Schönherr, Joel Frank, Lars Speckemeier, Dorothea
Kolossa, and Thorsten Holz. Dompteur: Taming Audio Adversarial Examples.
In USENIX Security Symposium, 2021.

[46] Nihar B. Shah. Challenges, Experiments, and Computational Solutions in Peer
Review. Communications of the ACM, 2022.

[47] Guillaume Cabanac, Cyril Labbé, and Alexander Magazinov. Tortured Phrases: A
Dubious Writing Style Emerging in Science. Evidence of Critical Issues Affecting
Established Journals. Computing Research Repository (CoRR), 2021.

[48] Michael L. Littman. Collusion Rings Threaten the Integrity of Computer Science
Research. Communications of the ACM, 2021.

[49] Kevin Leyton-Brown, Mausam, Yatin Nandwani, Hedayat Zarkoob, Chris
Cameron, Neil Newman, and Dinesh Raghu. Matching Papers and Reviewers
at Large Conferences. Computing Research Repository (CoRR), 2022.

[50] Battista Biggio and Fabio Roli. Wild patterns: Ten Years After the Rise of Ad-
versarial Machine Learning. Pattern Recognition, 2018.

[51] Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading Authorship Attribu-
tion of Source Code using Adversarial Learning. In USENIX Security Symposium,
2019.

[52] Erwin Quiring, David Klein, Daniel Arp, Martin Johns, and Konrad Rieck. Ad-
versarial Preprocessing: Understanding and Preventing Image-Scaling Attacks in
Machine Learning. In USENIX Security Symposium, 2020.

[53] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivas-
tava, and Kai-Wei Chang. Generating Natural Language Adversarial Examples.
In Conference on Empirical Methods in Natural Language Processing, 2018.

93

A Subverting Automatic Paper-Reviewer Assignment

[54] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. HotFlip: White-Box
Adversarial Examples for Text Classification. In Annual Meeting of the Assoc. for
Computational Linguistics (ACL), 2018.

[55] Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. Adversarial Ex-
ample Generation with Syntactically Controlled Paraphrase Networks. In Confer-
ence of the North American Chapter of the Assoc. for Computational Linguistics:
Human Language Technologies, (NAACL-HLT), 2018.

[56] Nicolas Papernot, Patrick D. McDaniel, Ananthram Swami, and Richard E. Ha-
rang. Crafting Adversarial Input Sequences for Recurrent Neural Networks. In
IEEE Military Communications Conference (MILCOM), 2016.

[57] Dat Tran and Chetan Jaiswal. PDFPhantom: Exploiting PDF Attacks Against
Academic Conferences’ Paper Submission Process with Counterattack. In IEEE
Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON), 2019.

[58] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by Latent Semantic Analysis. Journal of the
American Society for Information Science, 1990.

[59] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed Representations of Words and Phrases and their Compositionality. In
Advances in Neural Information Processing Systems (NeurIPS), 2013.

94

A Training Corpus

A Training Corpus

In the following, we describe how the corpus for the simulated paper-reviewer assign-
ment process is generated. The PC of the 43rd IEEE Symposium on Security and
Privacy conference consists of 165 persons. For each PC member, we construct an
archive of papers representative for the person’s expertise and interests by crawling
their Google Scholar profile. In rare cases, this profile is not available and we use the
profile from DBLP computer science bibliography instead. We sort all papers first by
year and then by number of citations to obtain an approximation of the recent research
interests. From this list, we remove all papers with no citation and for which we cannot
obtain a PDF file (e.g., paywalled files we cannot access). Furthermore, we remove
papers that are already used as a target submission. From the remaining list, we select
the first 40 papers (if available).

To construct reviewer archives Ar, we randomly sample 20 paper for each reviewer
and compile the corpus as the union of these archives. The remaining 20 papers are
used to simulate the black-box scenario. Here, we consider different levels of overlaps
between 0% (i.e., no overlap between the training data of the surrogates and target
system) and 100% (i.e., complete overlap).

95

A Subverting Automatic Paper-Reviewer Assignment

B Hyperparameter Selection

In the following, we describe how we determine the hyperparameters of our attack in
the two scenarios.

White-box scenario. We perform a grid search over 100 randomly sampled targets
from all three objectives and optimize parameters as a trade-off between attack efficacy
and efficiency. To not overfit to a specific model, we train 8 AutoBid systems on different
random seeds and randomly select one system per target. Note that an attacker with
full-knowledge could also choose parameters that perform best for a specific target. We
set the beam width B = 8 ∈ {20, . . . , 23}, step size k = 128 ∈ {25, . . . , 28}, number of
successors M = 512 ∈ {27, . . . , 29}, and reviewer window to ω = 6 ∈ {21, . . . , 23} with
offset υ = 3 ∈ {0, . . . , 3}. The target rank for rejected reviewer is set to rankrej

x = 10

and we consider ν = 5000 words per reviewer. We run the attack for at most I = 1000

iterations with at most S = 8 transitions between spaces and a target margin of
Φ = −0.02.

Black-box scenario. We repeat the grid search and train 8 systems on a surrogate
corpus at 70% overlap. We randomly sample 100 targets from all three objectives and
assign each a random surrogate system. We set the beam width B = 4 ∈ {20, . . . , 23},
step size k = 256 ∈ {25, . . . , 28}, number of successors M = 128 ∈ {27, . . . , 29}, and
reviewer window to ω = 2 ∈ {21, . . . , 23} with offset υ = 1 ∈ {0, . . . , 3}. Finally,
to increase the robustness of our attack, we set the margin as Φ = −0.16. All other
parameters are the same as before.

96

C Feature-Space Search

C Feature-Space Search

We report the L1 norms of individual attacks exemplary for the selection objective.
We consider 8 different assignment system and sample 100 random targets per system
(i. e., 800 attacks in total).

0 1000 2000 3000 4000 5000 6000 7000 8000

#Modified Words (L1)

7

6

5

4

3

2

1

0

A
ss

ig
n

m
en

t
S

y
st

em

Selection

D Generalization of Attack

We empirically evaluate our attack on two conferences with differently sized commit-
tees: (a) the 29th USENIX Security Symposium with 120 reviewers and (b) the 43rd
IEEE Symposium on Security and Privacy conference with a larger committee con-
sisting of 165 reviewers. We simulate the attack for all three objectives and report the
aggregated success rate, the median running time, and the median L1 and L∞ norm.

Success Rate Running Time L1 L∞

USENIX ’20 99.62 % 7m 38s 1033 30

IEEE S&P ’22 99.67 % 7m 12s 1115 35

97

A Subverting Automatic Paper-Reviewer Assignment

E Scaling of Target Reviewer

We run the attack for different combinations of the number of selected and rejected
target reviewers. For each combination, we report the median L1 norm as well as the
success rate over 100 targets.

0 1 2 3 4 5

Selected Reviewer

0

1

2#
R

ej
ec

te
d

R
ev

ie
w

er L1

Success
Rate 100.00%

571

99.00%

1136

95.00%

1636

92.00%

3145

65.00%

5968

100.00%

825

100.00%

2160

96.00%

2178

94.00%

3496

80.00%

4676

53.00%

7911

99.00%

1402

99.00%

3086

90.00%

2758

85.00%

3776

73.00%

4680

50.00%

8510

98

F Surrogate Ensembles

F Surrogate Ensembles

We report the L1 norms for the black-box scenario with varying sizes of surrogate
ensembles. We report the L1 over 100 targets for all three objectives.

8

4

2

1

Selection

8

4

2

1

E
n

se
m

b
le

S
iz

e

Rejection

0 10000 20000 30000 40000 50000 60000 70000 80000

#Modified Words (L1)

8

4

2

1

Substitution

99

A Subverting Automatic Paper-Reviewer Assignment

G Overlap

We compare the cross-entropy of reviewer-to-words distributions across models trained
on a corpus with different overlaps. We randomly select 10 reviewers and report the
mean cross-entropy and standard deviation between 8 models each (i.e., 64 pairs per
overlap and reviewer).

#
Overlap

0% 30% 70% 100%

1 13.19± 0.46 13.13± 0.47 13.12± 0.37 13.20± 0.44

2 12.56± 0.29 12.55± 0.37 12.64± 0.34 12.50± 0.29

3 13.58± 0.63 13.56± 0.56 13.47± 0.62 13.52± 0.63

4 12.43± 0.50 12.29± 0.48 12.35± 0.54 12.32± 0.50

5 13.41± 0.51 13.41± 0.61 13.50± 0.56 13.31± 0.66

6 12.84± 0.23 12.81± 0.21 12.93± 0.25 12.90± 0.23

7 14.20± 0.42 14.28± 0.44 14.39± 0.48 14.08± 0.41

8 13.57± 0.46 13.59± 0.46 13.55± 0.40 13.66± 0.42

9 13.44± 0.72 13.33± 0.68 13.54± 0.67 13.44± 0.76

10 15.24± 0.59 15.08± 0.59 15.31± 0.66 14.88± 0.61

100

H Committee Size

H Committee Size

We simulate the attack with varying sizes of the program committee. For each size, we
report the mean number of required modifications over 8 target systems each sampled
with a random committee. For each objective, we compute 280 adversarial papers per
target system.

100 200 300 400 500

Committee Size (# Reviewers)

1000

2000

3000

4000

#
M

o
d

ifi
ed

W
or

d
s

(L
1
)

Selection Rejection Substitution

I Load balancing

We simulate the attack with varying numbers of concurring submissions between 200
and 1,000. We report the mean success rate over 8 target systems each sampled with a
random committee. For each objective, we compute 280 adversarial papers per target
system.

200 400 600 800 1000

Submissions

40%

50%

60%

70%

80%

90%

S
u

cc
es

s
R

at
e

Margin 0.00 Margin 0.10 Margin 0.20

101

A Subverting Automatic Paper-Reviewer Assignment

J Problem-Space Transformations

Detailed description of problem-space transformations. For the transformations’ cate-
gorization, see Table 1.

Transformation Description

Reference addition Given a database of bibtex records of real papers, this transformation adds papers to the bibliography. It has two
options:

• Add unmodified papers. This option treats the insertion as optimization problem. It tries to find k bibtex
records such that the number of added words is maximized. This allows us to maximize the impact of the
added papers in the bibliography.

• Add adapted papers. This option adds r words into a randomly selected bibtex record, which is then added
to the bibliography. This transformation allows us to add very specific words which are difficult to add in
the normal text in a meaningful way. In the experiments, r is set to 3, i. e., each added bibliography entry
has only 3 additional words to avoid suspicion.

Synonym This transformation replaces words by synonyms using a security domain-specific word embedding [59]. To this
end, the word embeddings are computed on a collection of 11,770 security papers (Section 7 presents the dataset).
Two options are implemented:

• Add. Allows adding a word. For each word in the text, it obtains its synonyms. If one of the synonyms is in
the list of words that should be added, the synonym is used as replacement for the text word.

• Delete. Allows removing a word by replacing it with one of its synonyms.

The transformation iterates over possible synonyms and only uses a synonym if it has the same part-of-speech (POS)
tag as the original word. From the remaining set of synonyms, the transformation randomly chooses a candidate.

Spelling mistake Inserts a spelling mistake into a word that should be deleted.

• Most common misspelling. This option tries to find a misspelling from a list of 78 rules for most common
misspellings, such as appearence instead of appearance (rule: ends with -ance), or basicly instead of basically
(rule: ends with -ally).

• Swap or delete. Swap two adjacent letters or delete a letter in the word. Chooses between both ways randomly.

The transformation first tries to find a common misspelling, and if not possible, it applies the swap-or-delete
strategy.

Language model Uses a language model, here OPT [30], to create sentences with the requested words. To create more security-related
sentences, we use the corpus from Section 7 consisting of 11,770 security papers to finetune the OPT-350m model.
Equipped with this model, the transformer appends new text at the end of the related work or discussion section. To
this end, we extract some text before the insertion position and ask the model to complete the text while choosing
suitable words from the set of requested words.

Homoglyph Replaces a single character in a word by a visually identical or similar homoglyph. For instance, we can replace the
Latin letter A by its Cyrillic equivalent.

Hidden box Uses the accessibility support with the latex package accsupp that allows defining an alternative text over an input
text. Only the input text is visible, while the feature extractor processes the alternative text. This allows adding
an arbitrary number of words as alternative text. As the input text is not processed, we can also delete words or
text in this way. Two options are implemented:

• Add. Allows adding an arbitrary number of words in the alternative text. This step requires defining the
alternative text at least over a visible word that is, however, not extracted as feature afterwards anymore.
To reduce side effects, the transformation first checks if the attack requests a word to be reduced. If so,
it lays the alternative text over this word. Otherwise, a stop word is chosen that would be ignored in the
preprocessing stage anyway. The step thus reduces possible side effects.

• Delete. Adds an empty alternative text over the input word that needs to be removed, so that the word is
not extracted anymore.

102

Dompteur: Taming Audio
Adversarial Examples

Publication Data

Thorsten Eisenhofer, Lea Schönherr, Joel Frank, Lars Speckemeier, Dorothea Kolossa,
and Thorsten Holz. Dompteur: Taming Audio Adversarial Examples. In USENIX Se-
curity Symposium, 2021.

103

Dompteur: Taming Audio Adversarial Examples

Thorsten Eisenhofer1, Lea Schönherr1, Joel Frank1, Lars Speckemeier2,
Dorothea Kolossa1, Thorsten Holz1

1 Ruhr University Bochum
2 University College London

Abstract

Adversarial examples seem to be inevitable. These specifically crafted inputs allow
attackers to arbitrarily manipulate machine learning systems. Even worse, they often
seem harmless to human observers. In our digital society, this poses a significant threat.
For example, Automatic Speech Recognition (ASR) systems, which serve as hands-free
interfaces to many kinds of systems, can be attacked with inputs incomprehensible for
human listeners. The research community has unsuccessfully tried several approaches
to tackle this problem.

In this paper we propose a different perspective: We accept the presence of adver-
sarial examples against ASR systems, but we require them to be perceivable by human
listeners. By applying the principles of psychoacoustics, we can remove semantically
irrelevant information from the ASR input and train a model that resembles human
perception more closely. We implement our idea in a tool named Dompteur∗ and
demonstrate that our augmented system, in contrast to an unmodified baseline, suc-
cessfully focuses on perceptible ranges of the input signal. This change forces adversar-
ial examples into the audible range, while using minimal computational overhead and
preserving benign performance. To evaluate our approach, we construct an adaptive
attacker that actively tries to avoid our augmentations and demonstrate that adver-
sarial examples from this attacker remain clearly perceivable. Finally, we substantiate
our claims by performing a hearing test with crowd-sourced human listeners.

∗ The French word for tamer

B Taming Audio Adversarial Examples

1 Introduction

The advent of deep learning has changed our digital society. Starting from simple
recommendation techniques [1] or image recognition applications [2], machine-learning
systems have evolved to solve and play games on par with humans [3, 4, 5, 6], to
predict protein structures [7], identify faces [8], or recognize speech at the level of
human listeners [9]. These systems are now virtually ubiquitous and are being granted
access to critical and sensitive parts of our daily lives. They serve as our personal
assistants [10], unlock our smart homes’ doors [11], or drive our autonomous cars [12].

Given these circumstances, the discovery of adversarial examples [13] has had a
shattering impact. These specifically crafted inputs can completely mislead machine
learning-based systems. Mainly studied for image recognition [13], in this work, we
study how adversarial examples can affect Automatic Speech Recognition (ASR) sys-
tems. Preliminary research has already transferred adversarial attacks to the audio
domain [14, 15, 16, 17, 18, 19]. The most advanced attacks start from a harmless
input signal and change the model’s prediction towards a target transcription while
simultaneously hiding their malicious intent in the inaudible audio spectrum.

To address such attacks, the research community has developed various defense mech-
anisms [20, 21, 22, 23, 24, 25]. All of the proposed defenses—in the ever-lasting cat-
and-mouse game between attackers and defenders—have subsequently been broken [26].
Recently, Shamir et al. [27] even demonstrated that, given certain constraints, we can
expect to always find adversarial examples for our models.

Considering these circumstances, we ask the following research question: When we
accept that adversarial examples exist, what else can we do? We propose a paradigm
shift: Instead of preventing all adversarial examples, we accept the presence of some,
but we want them to be audibly changed.

To achieve this shift, we take inspiration from the machine learning community,
which sheds a different light on adversarial examples: Illyas et al. [28] interpret the
presence of adversarial examples as a disconnection between human expectations and
the reality of a mathematical function trained to minimize an objective. We tend to
think that machine learning models must learn meaningful features, e. g., a cat has
paws. However, this is a human’s perspective on what makes a cat a cat. Machine
learning systems instead use any available feature they can incorporate in their decision

106

1 Introduction

process. Consequently, Illyas et al. demonstrate that image classifiers utilize so-called
brittle features, which are highly predictive, yet not recognizable by humans.

Recognizing this mismatch between human expectations and the inner workings of
machine learning systems, we propose a novel design principle for ASR system in-
spired by the human auditory system. Our approach is based on two key insights:
(i) the human voice frequency is limited to the band ranges of approximately 300 −
5000Hz [29], while ASR systems are typically trained on 16kHz signals, which range
from 0−8000Hz, and (ii) audio signal can carry information, inaudible to humans [15].
Given these insights, we modify the ASR system by restricting its access to frequen-
cies and applying psychoacoustic modeling to remove inaudible ranges. The effects are
twofold: The ASR system can learn a better approximation of the human perception
during training (i.e., discarding unnecessary information), while simultaneously, adver-
saries are forced to place any adversarial perturbation into audible ranges.

We implement these principles in a prototype we call Dompteur. In a series of
experiments, we demonstrate that our prototype more closely models the human audi-
tory system. More specifically, we successfully show that our ASR system, in contrast
to an unmodified baseline, focuses on perceptible ranges of the audio signal. Following
Carlini et al. [30], we depart from the lab settings predominantly studied in prior
work: We assume a white-box attacker with real-world capabilities, i.e., we grant them
full knowledge of the system and they can introduce an unbounded amount of per-
turbations. Even under these conditions, we are able to force the attacker to produce
adversarial examples with an average of 24.33 dB of added perturbations while re-
maining accurate for benign inputs. Additionally, we conduct a large scale user study
with 355 participants. The study confirms that the adversarial examples constructed
for Dompteur are easily distinguishable from benign audio samples and adversarial
examples constructed for the baseline system.

In summary, we make the following key contributions:

• Constructing an augmented ASR. We utilize our key insights to bring ASR sys-
tems in better alignment with human expectations and demonstrate that tradi-
tional ASR systems indeed utilize non-audible signals that are not recognizable
by humans.

• Evaluation against adaptive attacker. We construct a realistic scenario where the
attacker can adapt to the augmented system. We show that we successfully force

107

B Taming Audio Adversarial Examples

the attacker into the audible range, causing an average of 24.33 dB added noise to
the adversarial examples. We could not find adversarial examples when applying
very aggressive filtering; however, this causes a drop in the benign performance.

• User study. To study the auditory quality of adversarial examples, we perform
a user study with an extensive crowd-sourced listening test. Our results demon-
strate that the adversarial examples against our system are significantly more
perceptible by humans.

To support further research in this area, we open-source our prototype implementation,
our pre-trained models, and audio samples online at github.com/rub-syssec/dompteur.

2 Technical Background

In the following, we discuss the background necessary to understand our augmentation
of the ASR system. For this purpose, we briefly introduce the fundamental concepts of
ASRs and give an overview of adversarial examples. Since our approach fundamentally
relies on psychoacoustic modeling, we also explain masking effects in human perception.

Speech recognition. ASR constitutes the computational core of today’s voice in-
terfaces. Given an audio signal, the task of an ASR system is to transcribe any spoken
content automatically. For this purpose, traditionally, purely statistical models were
used. They now have been replaced by modern systems based on deep learning meth-
ods [31, 32, 33], often in the form of hybrid neural/statistical models [34].

In this paper, we consider the open-source toolkit Kaldi [35] as an example of such
a modern hybrid system. Its high performance on many benchmark tasks has led to its
broad use throughout the research community as well as in commercial products like
e. g., Amazon’s Alexa [36, 37, 38].

Kaldi, and similar DNN/HMM hybrid systems can generally be described as three-
stage systems:

1. Feature extraction. For the feature extraction, a frame-wise discrete Fourier trans-
form (DFT) is performed on the raw audio data to retrieve a frequency represen-
tation of the input signal. The input features of the Deep Neural Networks (DNN)
are often given by the log-scaled magnitudes of the DFT-transformed signal.

108

https://github.com/rub-syssec/dompteur

2 Technical Background

2. Acoustic model DNN. The DNN acts as the acoustic model of the ASR system. It
calculates the probabilities for each of the distinct speech sounds (called phones)
of its trained language being present in each time frame from its DFT input fea-
tures. Alternatively, it may compute probabilities, not of phones, but of so-called
clustered tri-phones or, more generally, of data-driven units termed senones.

3. Decoding. The output matrix of the DNN is used together with an hidden Markov
model (HMM)-based language model to find the most likely sequence of words,
i. e., the most probable transcription. For this purpose, a dynamic programming
algorithm, e.g., Viterbi decoding, is used to search the best path through the
underlying HMM. The language model describes the probabilities of word se-
quences, and the acoustic model output gives the probability of being in each
HMM state at each time.

Psychoacoustic modeling. Recent attacks against ASR systems exploit intrin-
sics of the human auditory system to make adversarial examples less conspicuous
[17, 39, 40, 41]. Specifically, these attacks utilize limitations of human perception to
hide modifications of the input audio signal within inaudible ranges. We use the same
effects for our approach to remove inaudible components from the input:

• Absolute hearing threshold. Human listeners can only perceive sounds in a limited
frequency range, which diminishes with age. Moreover, for each frequency, the
sound pressure is important to determine whether the signal component is in the
audible range for humans. Measuring the hearing thresholds, i. e., the necessary
sound pressures for each frequency to be audible in otherwise quiet environ-
ments, one can determine the so-called absolute hearing threshold as depicted in
Figure 1a. Generally speaking, everything above the absolute hearing thresholds
is perceptible in principle by humans, which is not the case for the area under the
curve. As can be seen, much more energy is required for a signal to be perceived
at the lower and higher frequencies. Note that the described thresholds only hold
for cases where no other sound is present.

• Frequency masking. The presence of another sound—a so-called masking tone—
can change the described hearing thresholds to cover a larger area. This masking
effect of the masking tone depends on its sound pressure and frequency. Figure 1b

109

B Taming Audio Adversarial Examples

shows an example of a 1 kHz masking tone, with its induced changes of the hearing
thresholds indicated by the dashed line.

• Temporal masking. Like frequency masking, temporal masking is also caused by
other sounds, but these sounds have the same frequency as the masked tone and
are close to it in the time domain, as shown in Figure 1c. Its root cause lies in
the fact that the auditory system needs a certain amount of time, in the range of
a few hundreds of milliseconds, to recover after processing a higher-energy sound
event to be able to perceive a new, less energetic sound. Interestingly, this effect
does not only occur at the end of a sound but also, although much less distinct,
at the beginning of a sound. This seeming causal contradiction can be explained
by the processing of the sound in the human auditory system.

Adversarial examples. Since the seminal papers by Szegedy et al. [13] and Big-
gio et al. [42], a field of research has formed around adversarial examples. The basic
idea is simple: An attacker starts with a valid input to a machine learning system.
Then, they add small perturbations to that input with the ultimate goal of changing
the resulting prediction (or in our case, the transcription of the ASR).

More formally, given a machine learning model f and an input-prediction pair 〈 x, y 〉,
where f(x) = y, we want to find a small perturbation δ s.t.:

x′ = x+ δ ∧ f(x′) 6= f(x).

In this paper, we consider a stronger type of attack, a targeted one. This has two
reasons: the first is that an untargeted attack in the audio domain is fairly easy to
achieve. The second is that a targeted attack provides a far more appealing (and thus,
far more threatening) real-life use case for adversarial examples. More formally, the
attacker wants to perturb an input phrase x (i.e., an audio signal) with a transcription y

(e.g., “Play the Beatles”) in such a way that the ASR transcribes an attacker-chosen
transcription y′ (e.g., “Unlock the front door”). This can be achieved by computing an
adversarial example x′ based on a small adversarial perturbation δ s.t.:

x′ = x+ δ ∧ ASR(x′) = y′ ∧ y 6= y′. (1)

There exist a multitude of techniques for creating such adversarial examples. We use
the method introduced by Schönherr et al. [17] for our evaluation in Section 4. The

110

2 Technical Background

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20

Frequency (kHz)

0

20

40

60

80

H
ea

ri
n

g
T

h
re

sh
ol

d
s

(d
B

)

(a) Absolute Hearing Thresholds

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20

Frequency (kHz)

0

20

40

60

80

H
ea

ri
n

g
T

h
re

sh
ol

d
s

(d
B

)

(b) Frequency Masking

-100 -50 0 50 100 150 200 250 300 50 400

Time (ms)

0

20

40

60

80

H
ea

ri
n

g
T

h
re

sh
ol

d
s

(d
B

)

(c) Temporal Masking

Figure 1: Psychoacoustic allows to describe limitations of the human auditory
system. Figure 1a shows the average human hearing threshold in quiet. Figure 1b shows an
example of masking, illustrating how a loud tone at 1kHz shifts the hearing thresholds of
nearby frequencies and Figure 1c shows how the recovery time of the auditory system after
processing a loud signal leads to temporal masking.

111

B Taming Audio Adversarial Examples

method can be divided into three parts: In a first step, attackers choose a fixed output
matrix of the DNN to maximize the probability of obtaining their desired transcription
y′. As introduced before, this matrix is used in the ASR system’s decoding step to obtain
the final transcription. They then utilize gradient descent to perturb a starting input
x (i. e., an audio signal feed into the DNN), to obtain a new input x′, which produces
the desired matrix. This approach is generally chosen in white-box attacks [16, 18].
Note that we omit the feature extraction part of the ASR; however, Schönherr et al.
have shown that this part can be integrated into the gradient step itself [17]. A third
(optional) step is to utilize psychoacoustic hearing thresholds to restrict the added
perturbations to inaudible frequency ranges. More technical details can be found in
the original publication [17].

3 Modeling the Human Auditory System

We now motivate and explain our design to better align the ASR system with human
perception. Our approach is based on the fact that the human auditory system only
uses a subset of the information contained in an audio signal to form an understanding
of its content. In contrast, ASR systems are not limited to specific input ranges and
utilize every available signal – even those inaudible for the human auditory system.
Consequently, an attacker can easily hide changes within those ranges. Intuitively, the
smaller the overlap between these two worlds, the harder it becomes for an attacker
to add malicious perturbations that are inaudible to a human listener. This is akin to
reducing the attack surface in traditional systems security.

To tackle these issues, we leverage the following two design principles in our approach:

(i) Removing inaudible parts: As discussed in Section B, audio signals typically carry
information imperceptible to human listeners. Thus, before passing the input to
the network, we utilize psychoacoustic modeling to remove these parts.

(ii) Restricting frequency access: The human voice frequency range is limited to a
band of approximately 300 − 5000Hz [29]. Thus, we implement a band-pass
filter between the feature extraction and model stage (cf. Section B) to restrict
the acoustic model to the appropriate frequencies.

112

3 Modeling the Human Auditory System

3.1 Implementation

In the following, we present an overview of the implementation of our proposed augmen-
tations. We extend the state-of-the-art ASR toolkit Kaldi with our augmentations to
build a prototype implementation called Dompteur. Note that our proposed methods
are universal and can be applied to any ASR system.

Psychoacoustic filtering. Based on the psychoacoustic model of MPEG-1 [43], we
use psychoacoustic hearing thresholds to remove parts of the audio that are not perceiv-
able to humans. These thresholds define how dependencies between certain frequencies
can mask, i.e., make inaudible, other parts of an audio signal. Intuitively, these parts of
the signal should not contribute any information to the recognizer. They do, however,
provide space for an attacker to hide adversarial noise.

We compare the absolute values of the complex valued short-time Fourier transform
(STFT) representation of the audio signal S with the hearing thresholds H and define
a mask via

M(n, k) =

0 if S(n, k) ≤ H(n, k) + Φ

1 else
, (2)

with n = 0, . . . , N − 1 and k = 0, . . . , K − 1. We use the parameter Φ to control the
effect of the hearing thresholds. For Φ = 0, we use the original hearing threshold, for
higher values we use a more aggressive filtering, and for smaller values we retain more
from the original signal. We explore this in detail in Section 4. We then multiply all
values of the signal S with the mask M

T = S�M, (3)

to obtain the filtered signal T.

Band-pass filter. High and low frequencies are not part of human speech and do not
contribute significant information. Yet, they can again provide space for an attacker to
hide adversarial noise. For this reason, we remove low and high frequencies of the audio
signal in the frequency domain. We apply a band-pass filter after the feature extraction
of the system by discarding those frequencies that are smaller or larger than certain

113

B Taming Audio Adversarial Examples

thresholds (the so-called cut-off frequencies). Formally, the filtering can be described
via

T(n, k) = 0 ∀ fmax < k < fmin, (4)

where fmax and fmin describe the lower and the upper cut-off frequencies of the
band-pass.

3.2 Attacker Model

While some of our augmentations improve the ASR system’s overall performance,
we are specifically interested in its performance against adversarial perturbations. To
achieve any meaningful results, we believe the attacker needs to have complete control
over the input. Following guidelines recently established by Carlini et al. [30], we em-
bark from theoretical attack vectors towards the definition of a realistic threat model,
capturing real-world capabilities of attackers.

The key underlying insight is that the amount of perturbations caused by a real-world
attack cannot be limited. This is easy to see: in the worst case, the attacker can always
force the target output by replacing the input with the corresponding audio command.
Note that this, in turn, implies that we cannot completely prevent adversarial attacks
without also restricting benign inputs.

We can also not rely on obfuscation. Previous works have successfully shown so-called
parameter-stealing attacks, which build an approximation of a black-box system [44,
45, 46, 47, 48]. Since an attacker has full control over this approximated model, they can
utilize powerful white-box attacks against it, which transfer to the black-box model.

In summary, we use the following attacker model:

• Attacker knowledge: Following Kerckhoffs’ principle [49], we consider a white-box
scenario, where the attacker has complete knowledge of the system, including all
model parameters, training data, etc.

• Attacker goals: To maximize practical impact, we assume a targeted attack, i. e.,
the attacker attempts to perturb a given input x to fool a speech recognition
system into outputting a false, attacker-controlled target transcription y′ based
on Equation (1).

114

4 Evaluation

• Attacker capabilities: The attacker is granted complete control over the input,
and we explicitly do not restrict them in any way on how δ should be crafted.
Note, however, that δ is commonly minimized during computation according to
some distance metric. For example, by measuring the perceived noise, an attacker
might try to minimize the conspicuousness of their attack [17].

We choose this attacker model with the following in mind: We aim to limit the
attacker, not in the amount of applied perturbations, but rather confine the nature
of perturbations themselves. In particular, we want adversarial perturbations to be
clearly perceptible by humans and, thus, strongly perturb the initial input such that
the added noise becomes audible for a human listener. In this case, an attack—although
still viable—significantly loses its malicious impact in practice.

4 Evaluation

With the help of the following experiments, we empirically verify and assess our pro-
posed approach according to the following three main aspects:

(i) Benign performance. The augmentation of the system should impair the per-
formance on benign input as little as possible. We analyze different parameter
combinations for the psychoacoustics and our band-pass filter to show that our
augmented model retains its practical use.

(ii) Adaptive attacker. To analyze the efficacy of the augmented system, we construct
and assess its robustness against adversarial examples generated by a strong at-
tacker with white-box access to the system. This attacker is aware of our aug-
mentations and actively factors them into the optimization.

(iii) Listening test. Finally, we verify the success of our method by a crowd-sourced
user study. We conduct a listening test, investigating the quality (i.e., the incon-
spicuousness) of the adversarial examples computed from the adaptive attacker
against the augmented ASR system.

All experiments were performed on a server running Ubuntu 18.04, with 128 GB
RAM, an Intel Xeon Gold 6130 CPU, and four Nvidia GeForce RTX 2080 Ti. For
our experiments, we use Kaldi in version 5.3 and train the system with the default
settings from the Wall Street Journal (WSJ) training recipe.

115

B Taming Audio Adversarial Examples

4.1 Metrics

To assess the quality of adversarial examples both in terms of efficacy and inconspic-
uousness, we use two standard measures.

Word Error Rate (WER). The Word Error Rate (WER) is computed based on
the Levenshtein distance [50], which describes the edit distance between the reference
transcription and the ASR output (i.e., the minimum number of edits required to
transform the output text of the ASR system into the correct text).

We compute the Levenshtein distance L as the sum over all substituted words S,
inserted words I, and deleted words D:

WER = 100 · L
N

= 100 · S +D + I

N
,

where N is the total number of words of the reference text. The smaller the WER, the
fewer errors were made by the ASR system.

To evaluate the efficacy of adversarial examples, we measure the WER between the
adversarial target transcription and the output of the ASR system. Thus, a successful
adversarial example has a WER of 0 %, i. e., fully matching the desired target descrip-
tion y′. Note that the WER can also reach values above 100 %, e. g., when many words
are inserted. This can especially happen with unsuccessful adversarial examples, where
mostly the original text is transcribed, which leads to many insertions.

Segmental Signal-to-Noise Ratio (SNRseg). The WER can only measure the
success of an adversarial example in fooling an ASR system. For a real attack, we are
also interested in the (in-) conspicuousness of adversarial examples, i. e., the level of the
added perturbations. For this purpose, we quantify the changes that an attacker applies
to the audio signal. Specifically, we use the Signal-to-Noise Ratio (SNR) to measure
the added perturbations. More precisely, we compute the Segmental Signal-to-Noise
Ratio (SNRseg) [51, 52], a more accurate measure of distortion than the SNR, when
signals are aligned [52].

Given the original audio signal x(t) and the adversarial perturbations σ(t) defined
over the sample index t, the SNRseg can be computed via

SNRseg(dB) = 10

K

K−1∑
k=0

log10

∑Tk+T−1
t=Tk x2(t)∑Tk+T−1
t=Tk σ2(t)

,

116

4 Evaluation

disabled 7000 6000 5000 4000 3000

Low-pass (Hz)

disabled

100

200

300

400

500

H
ig

h
-p

as
s

(H
z)

5.90 % 5.72 % 5.95 % 5.71 % 5.87 % 6.18 %

6.06 % 5.65 % 5.64 % 5.69 % 5.72 % 6.04 %

5.94 % 5.55 % 5.81 % 5.76 % 5.71 % 5.92 %

6.10 % 5.90 % 6.17 % 5.94 % 6.01 % 6.40 %

6.10 % 6.33 % 6.24 % 6.10 % 6.31 % 6.72 %

6.52 % 6.50 % 6.36 % 6.33 % 6.49 % 7.09 %

Figure 2: Word Error Rate (WER) for different band-pass filters. For each filter, we
train three models and report the best accuracy in terms of WER (the lower, the better).

with T being the number of samples in a segment and K the total number of segments.
For our experiments, we set the segment length to 16 ms, which corresponds to T = 256

samples for a 16 kHz sampling rate.
The higher the SNRseg, the less noise has been added to the audio signal. Hence, an

adversarial example is considered less conspicuous for higher SNRseg values. Note that
we use the SNRseg ratio only as an approximation for the perceived noise. We perform
a listening test with humans for a realistic assessment and show that the results of the
listening test correlate with the reported SNRseg (cf. Section 4.4).

4.2 Benign Performance

Our goal is to preserve accuracy on benign inputs (i. e., non-malicious, unaltered speech)
while simultaneously impeding an attacker as much as possible. To retain that accuracy
as much as possible, the parameters of the band-pass, and the psychoacoustic filter need
to be carefully adjusted. Note that adversarial robustness is generally correlated with

117

B Taming Audio Adversarial Examples

a loss in accuracy for image classification models [53]. Accordingly, we assume that
higher adversarial robustness likely incurs a trade-off on benign input performance.

All models in this section are trained with the default settings for the Wall Street
Journal (WSJ) training recipe of the Kaldi toolkit [35]. The corresponding WSJ-
based speech corpus [54] contains approximately 81 hours of training data and consists
of uttered sentences from the Wall Street Journal.

We train three models for each configuration and report the WER on the test set
for the model with the best performance. For the test set, we use the eval92 subset
consisting of 333 utterances with a combined length of approximately 42 minutes.

Band-pass filtering. The band-pass filter limits the signal’s frequency range by re-
moving frequencies below and above certain thresholds. Our goal is to remove parts
of the audio that are not used by the human voice. We treat these values as classical
hyperparameters and select the best performing combination by grid searching over
different cut-off frequencies; for each combination, we train a model from scratch, us-
ing the training procedure outlined above. The results are depicted in Figure 2. If we
narrow the filtered band (i. e., remove more information), the WER gradually increases
and, therefore, worsens the recognizer’s accuracy. However, for many cases, even when
removing a significant fraction of the signal, the augmented system either achieves
comparable results or even surpasses the baseline (WER 5.90%). In the best case,
we reach an improvement by 0.35% percentage points to a WER of 5.55% (200 Hz-
7000 Hz). This serves as evidence that the unmodified input contains signals that are
not needed for transcription. In Section 4.3.3, we further confirm this insight by an-
alyzing models with narrower bands. We hypothesize that incorporating a band-pass
filter might generally improve the performance of ASR systems but note that further
research on this is needed.

For the remaining experiments, if not indicated otherwise, we use the 200-7000 Hz
band-pass.

Psychoacoustic filtering. The band-pass filter allows us to remove high- and low-
frequency parts of the signal; however, the attacker can still hide within this band in
inaudible ranges. Therefore, we use psychoacoustic filtering as described in Section B to
remove these parts in the signal. We evaluate different settings for Φ from Equation (2)
– by increasing Φ, we artificially increase the hearing thresholds, resulting in more

118

4 Evaluation

Table 1: Recognition rate of the ASR system on benign input. We report the per-
formance of an unmodified Kaldi system as well as two variants hardened by our approach.
For our model, the scaling factor ϕ is set to 0 and the band-pass filter configured with 200-
7000Hz. Note, when feeding standard input to Dompteur, we disable its psychoacoustic
filtering capabilities.

Kaldi Dompteur

w/o band-pass w/ band-pass

Standard Input WER 5.90 % WER 6.20 % WER 6.33 %
Processed Input WER 8.74 % WER 6.50 % WER 6.10 %

aggressive filtering. We plot the results in Figure 3 for both psychoacoustic filtering and
a baseline WER, with and without band-pass, respectively. The WER increases with
increasing Φ, i. e., the performance drops if more of the signal is removed, independent
of the band-pass filter.

When we use no band-pass filter, the WER increases from 5.90% (baseline) to 6.50%

for Φ = 0 dB, which is equivalent to removing everything below the human hearing
thresholds. When we use more aggressive filtering—which results in better adversarial
robustness (cf. Section 4.3)—the WER increases up to 8.05% for Φ = 14 dB. Note that
the benefits of the band-pass filter remain even in the presence of psychoacoustic filter-
ing and results in improving the WER to 6.10 % (Φ = 0 dB) and 7.83 % (Φ = 14 dB).
We take this as another sign that a band-pass filter might generally be applicable to
ASR systems.

Cross-model benign accuracy. Finally, we want to evaluate if Dompteur indeed
only uses relevant information. To test this hypothesis, we compare three different
models. One completely unaugmented model (i. e., an unmodified version of Kaldi),
one model trained with psychoacoustics filtering, and one model trained with both
psychoacoustics filtering and a band-pass filter. We feed these models two types of
inputs: (i) standard inputs, i. e., inputs directly lifted from the WSJ training set, and
(ii) processed inputs, these inputs are processed by our psychoacoustic filtering. If our
intuitive understanding is correct and Dompteur does indeed learn a better model of
the human auditory system, it should retain a low WER even when presented with non-

119

B Taming Audio Adversarial Examples

baseline -3 0 3 6 9 12 13 14

Scaling Factor Φ (dB)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

W
E

R
(%

)

5.90
6.06

6.50
6.68 6.72 6.75

7.62
7.76

8.05

5.55

5.83

6.10 6.13

6.45

6.68

7.37

7.74
7.83

w/o band-pass

w/ band-pass

Figure 3: Recognition rate for psychoacoustic filtering. For each ϕ we train a model
both with and without band-pass filter (200-7000Hz) and report the best accuracy from three
repetitions. A negative scaling factor partially retains inaudible ranges. Note that the benefits
of the band-pass filter are retrained, even when we incorporate psychoacoustic filtering.

filtered input. Thus, the model has learned to ignore unnecessary parts of the input.
The results are shown in Table 1 and match our hypothesis: Dompteur’s performance
only drops slightly (6.10% → 6.33%) when presented with unfiltered input or does
even improve if the band-pass is disabled (6.50% → 6.20%). Kaldi, on the other
hand, heavily relies on this information when transcribing audio, increasing its WER
by 2.84 percentage point (5.90%→ 8.74%). Thus, the results further substantiate our
intuition that we filter only irrelevant information with our approach.

4.3 Adaptive Attacker

We now want to evaluate how robust Dompteur is against adversarial examples.
We construct a strong attacker with complete knowledge about the system and, in
particular, our modifications. Ultimately, this allows us to create successfully adver-
sarial examples. However, as inaudible ranges are removed, the attacker is now forced
into human-perceptible ranges, and, consequently, the attack loses much of its mali-
cious impact. We provide further support for this claim in Section 4.4 by performing
a user study to measure the perceived quality of adversarial examples computed with
this attack.

120

4 Evaluation

0 500 1000 1500 2000

Iteration

0.0

50.0

100.0

150.0

200.0

250.0

W
E

R
(%

)

Kaldi

Kaldi w/ hiding

Φ = 0

Φ = 6

Φ = 12

Figure 4: Progress of attack for computing adversarial examples. We run the attack
against multiple instances of Dompteur with different values of Φ and a 200Hz-7000Hz band-
pass filter. The baseline refers to the attack from Schönherr et al. [17] against an unaltered
instance of Kaldi. For each attack report the Word Error Rate (WER) for the first 2000
iterations.

Attack. We base our evaluation on the attack by Schönherr et al. [17], which pre-
sented a strong attack that works with Kaldi. Recent results show that it is crucial to
design adaptive attacks as simple as possible while simultaneously resolving any obsta-
cles for the optimization [55]. To design such an attacker against Dompteur, we need
to adjust the attack to consider the augmentations in the optimization. Therefore, we
extend the baseline attack against Kaldi to include both the band-pass and psychoa-
coustic filter into the computation. This allows the attacker to compute gradients for
the entire model in a white-box fashion.

More specifically, we extend the gradient descent step s.t. (i) the band-pass filter and
(ii) the psychoacoustic filter component back-propagates the gradient respectively.

(i) Band-pass filter. For the band-pass filter we remove those frequencies that are
smaller and larger than the cut-off frequencies of the band-pass filter. This is also
applied to the gradients of the back propagated gradient to ignore changes that
will fall into ranges of the removed signal

∇T(n,k) = 0 ∀fmax < k < fmin. (5)

121

B Taming Audio Adversarial Examples

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(a) Unmodified Signal

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(b) Attack against Kaldi

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(c) Attack against Dompteur (Φ = 12)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)
−70

−60

−50

−40

−30

(d) Hearing Thresholds

Figure 5: Spectrograms of adversarial examples. Figure 5a shows the unmodified signal,
Figure 5b depicts the baseline with an adversarial example computed against Kaldi with
psychoacoustic hiding, Figure 5c an adversarial example computed with the adaptive attack
against Dompteur, and Figure 5d shows the computed hearing thresholds for the adversarial
example.

(ii) Psychoacoustic filter. The same principle is used for the psychoacoustic filtering,
where we use the mask M to zero out components of the signal that the network
will not process

∇S = ∇T �M. (6)

Experimental setup. We evaluate the attack against different versions of Domp-
teur. Each model uses a 200 − 7000Hz band-pass filter, and we vary the degrees of
the psychoacoustic filtering (Φ ∈ {0, 3, 6, 9, 12, 13, 14}). We compare the results against
two baselines to evaluate the inconspicuousness of the created adversarial examples.
First, we run the attack of Schönherr et al. without psychoacoustic hiding against an
unaltered version Kaldi. Second, we re-enable psychoacoustic hiding and run the orig-
inal attack against Kaldi, to generate state-of-the-art inaudible adversarial examples.
As a sanity check, we also ran the original attack (i. e., with psychoacoustic hiding)
against Dompteur. As expected, this attack did not create any adversarial examples
since we filter the explicit ranges the attacker wants to utilize.

122

4 Evaluation

As a target for all configurations, we select 50 utterances with an approximate length
of 5s from the WSJ speech corpus test set eval92. The exact subset can be found
in Appendix A. We use the same target sentence send secret financial report for all
samples.

These parameters are chosen such that an attacker needs to introduce ~4.8 phones
per second into the target audio, which Schönherr et al. suggests as both effective and
efficiently possible [17]. Furthermore, we picked the utterances and target sentence to
be easy for an attacker in order to decouple the influence on our analysis. Specifically,
for these targets the baseline has a very high success rate and low SNRseg (cf. Table
2). Note that the attack is capable of introducing arbitrary target sentences (up to a
certain length). In Section 4.3.2, we further analyze the influence of the phone rate,
and in particular, the influence of the target utterance and sentence on the SNRseg.
We compute adversarial examples for different learning rates and a maximum of 2000
iterations. This number is sufficient for the attack to converge, as shown in Figure 4,
where the WER is plotted as a function of the number of iterations.

Results. The main results are summarized in Table 2. We report the average SNRseg
over all adversarial examples, the best (SNRsegmax), and the number of successful
adversarial examples created.

We evaluate the attack using different learning rates (0.05, 0.10, 0.5, and 1). In our
experiments, we observed that while small learning rates generally produce less noisy
adversarial examples, they simultaneously get more stuck in local optima. Thus, to
simulate an attacker that would run an extensive search and uses the best result we
also report the intersection of successful adversarial examples over all learning rates. If
success rate is the primary goal, we recommend a higher learning rate.

By increasing Φ, we can successfully force the attacker into audible ranges while also
decreasing the attack’s success rate. When using very aggressive filtering (Φ = 14), we
can prevent the creation of adversarial examples completely, albeit with a hit on the
benign WER (5.55%→ 7.83%). Note, however, that we only examined 50 samples

of the test corpus, and other samples might still produce valid adversarial examples.
We see that adversarial examples for the augmented systems are more distorted for
all configurations compared to the baselines. When using Φ ≥ 12, we force a negative
SNRseg for all learning rates. For these adversarial examples, the noise (i. e., adversarial
perturbations) energy exceeds the energy of the signal. With respect to the baselines,

123

B Taming Audio Adversarial Examples

Table 2: Number of successful Adversarial Examples (AEs) and Segmental Signal-
to-Noise (SNRseg) ratio for the experiments with the adaptive attacker. We report
the numbers for all computed adversarial examples against the augmented models as well as
our two baselines (with and without psychoacoustic hiding). As the success rate and SNRseg
depend on the learning rate, we combine these in the last row. For this, we select the best (i.e.,
least noisy) AE for each utterance among the four learning rates. For the SNRseg, we only
consider successful AEs. The higher the SNSseg, the less noise (i. e., adversarial perturbation)
is present in the audio signal. Negative values indicate that the energy of the noise exceeds
the energy in the original signal.

Kaldi Dompteur

Learning
Rate

Metric baseline
w/o hiding

baseline
w/ hiding

Φ = 0 Φ = 3 Φ = 6 Φ = 9 Φ = 12 Φ = 13 Φ = 14

0.05
AEs 50/50 17/50 31/50 28/50 10/50 4/50 0/50 0/50 0/50
SNR 5.80/ 14.44 13.48/ 18.50 6.03/10.63 3.61/ 8.31 1.21/5.53 1.50/ 3.23 — — —

0.01
AEs 50/50 28/50 38/50 34/50 22/50 10/50 0/50 0/50 0/50
SNR 2.15/ 10.59 9.36/ 15.81 3.74/ 9.53 0.47/ 6.41 -0.68/3.60 -1.31/ 1.10 — — —

0.5
AEs 49/50 23/50 48/50 44/50 42/50 20/50 1/50 1/50 0/50
SNR -8.54/ -0.02 1.08/ 8.63 -3.78/ 3.24 -6.51/ 0.11 -7.74/-1.47 -8.69/-3.35 -13.56/-13.56 -15.69/-15.69 —

1
AEs 50/50 16/50 49/50 50/50 43/50 23/50 1/50 1/50 0/50
SNR -13.68/ -5.03 -1.81/ 4.50 -7.44/-0.29 -10.50/-3.00 -10.99/-4.34 -11.98/-6.37 -17.69/-17.69 -11.73/-11.73 —

Best AEs
AEs 50/50 37/50 50/50 50/50 46/50 27/50 2/50 2/50 0/50
SNR 5.80/ 14.44 8.71/ 18.50 3.36/10.63 0.85/ 8.31 -4.71/5.53 -7.14/ 3.23 -15.62/-13.56 -13.71/-11.73 —

AEs: Successful adversarial examples; SNR: SNRseg/SNRsegmax in dB

the noise energy increases on average by 21.42 dB (without psychoacoustic hiding)
and 24.33 dB (with hiding enabled). This means there is, on average, ten times more
energy in the adversarial perturbations than in the original audio signal. A graphical
illustration can be found in Figure 5, where we plot the power spectra of different
adversarial examples compared to the original signal.

4.3.1 Non-Speech Audio Content

The task of an ASR system is to transcribe audio files with spoken content. An attacker,
however, might pick other content, i.e., music or ambient noise, to obfuscate his hidden
commands. Thus, we additionally evaluated adversarial examples based on audio files
containing music and bird sounds. The results are presented in Table 3.

We can repeat our observations from the previous experiment. When we utilize a
more aggressive filter, we observe that the perturbation energy of adversarial examples

124

4 Evaluation

Table 3: Number of successful Adversarial Examples (AEs) and mean Seg-
mental Signal-to-Noise (SNRseg) ratio for non-speech audio content. For each
AE, we selected the least noisiest example, from running the attack with learning rates
({0.05, 0.1, 0.5, 1.}). For the SNRseg we only consider successful AEs and report the differ-
ence to the baseline (Kaldi). We highlight the highest loss in bold.

Birds Music

AEs SNRseg (dB) Loss AEs SNRseg (dB) Loss

Kaldi
w/o hiding 50/50 11.83 45/50 23.26

w/ hiding 5/50 17.76 (+5.93) 3/50 28.06 (+4.80)

Dompteur
Φ = 0 50/50 9.58 (-2.25) 50/50 26.35 (+3.09)

Φ = 6 31/50 -2.15 (-13.98) 45/50 16.03 (-7.23)

Φ = 12 5/50 -12.25 (-24.08) 3/50 1.94 (-21.32)

increases with respect to the baselines by up to 24.08 dB (birds) and 21.32 dB (mu-
sic). Equally, the attack’s general success decreases to 5/50 (birds) and 3/50 (music)
successful adversarial examples.

Note that the SNRseg for music samples are in general higher than that of speech
and bird files as these samples have a more dynamic range of signal energy. Hence,
potentially added adversarial perturbations have a smaller impact on the calculation
of the SNRseg. The absolute amount of added perturbations, however, is similar to that
of other content. Thus, when listening to the created adversarial examples† the samples
are similarly distorted. This is further confirmed in Section 4.4 with our listening test.

4.3.2 Target Phone Rate

The success of the attack depends on the ratio between the length of the audio file
and the length of the target text, which we refer to as the target phone rate. This rate
describes how many phones an attacker can hide within one second of audio content.

In our experiments, we used the default ratios recommended by Schönherr et al.
However, a better rate might exist for our setting. Therefore, to evaluate the effect of

† rub-syssec.github.io/dompteur

125

https://rub-syssec.github.io/dompteur/

B Taming Audio Adversarial Examples

5 10 15 20

Phone Rate (phones/s)

0.0

20.0

40.0

60.0

80.0

100.0

W
E

R
(%

)

WER Φ = 0

SNRseg Φ = 0

−5

0

5

10

S
N

R
se

g
(d

B
)

Figure 6: Word Error Rate (WER) and Segmental Signal-to-Noise (SNRseg) ratio
for different phone rates. We report the mean and std. deviation for adversarial examples
computed for targets with varying length.

the target phone rate, we sample target texts of varying lengths from the WSJ corpus
and compute adversarial examples for different target phone rates. We pick phone rates
ranging from 1 to 20 and run 20 attacks for each of them for at most 1000 iterations,
resulting in 400 attacks.

The results in Figure 6 show that, in general, with increasing phone rates, the SNRseg
decreases and stagnates for target phone rate beyond 12. This is expected as the at-
tacker tries to hide more phones and, consequently, needs to change the signal more
drastically. Thus, we conclude that the default settings are adequate for our setting.

4.3.3 Band-Pass Cut-off Frequencies

So far, we only considered a relatively wide band-pass filter (200-7000 Hz). We also want
to investigate other cut-off frequencies. Thus, we disable the psychoacoustic filtering
and compute adversarial examples for different models examined in Section 4.2. We
run the attack for each band-pass model with 20 speech samples for at most 1000
iterations.

The results are reported in Table 4. We observe that the energy amount of adversarial
perturbation remains relatively constant for different filters, which is expected since the

126

4 Evaluation

Table 4: Attack for different cut-off frequencies of the band-pass filter. We report
the number of successful adversarial examples (AEs) and the mean Segmental Signal-to-Noise
(SNRseg) ratio. For the SNRseg we only consider successful AEs.

Band-pass
300Hz- 300Hz- 300Hz- 500Hz- 500Hz- 500Hz-

7000Hz 5000Hz 3000Hz 7000Hz 5000Hz 3000Hz

AEs 18/20 18/20 11/20 20/20 17/20 12/20
SNRseg 7.82 7.55 7.27 8.45 7.90 7.39
WER 5.90 % 5.94 % 6.40 % 6.50 % 6.33 % 7.09 %

attacker has complete knowledge of the system. As we narrow the frequency band, the
attacker adopts and puts more perturbation within these bands.

Apart from the SNRseg, we also observe a decrease in the attack success, espe-
cially for small high cut-off frequencies, with only 11/20 (300-3000 Hz) and 12/20 (500-
3000 Hz) successful adversarial examples.

4.4 Listening Tests

Our goal is to make an adversarial attack noticeable by forcing modification to an audio
signal into perceptible ranges. We have used the SNRseg as a proxy of the perceived
audio quality of generated adversarial examples. However, this value can only give a
rough approximation, and we are in general more interested in the judgment of human
listeners. Specifically, we are interested to quantify if and to what extent malicious
perturbations are audible to human listeners.

Therefore, we have conducted a Multiple Stimuli with Hidden Reference and An-
chor (MUSHRA) test [56], a commonly used test to assess the quality of audio stimuli.
This test allows us to get a ranking of the perceived quality of adversarial examples
in comparison to an unmodified reference signal. Based on this measure, we can derive
whether a participant 1) could detect any difference between an adversarial example
and a clean signal (i.e., whether perturbations are audible) and, 2) obtain a subjec-
tive estimate on the amount of perceived perturbations (i.e., poorly rated samples are
perceived more noisy).

127

B Taming Audio Adversarial Examples

Table 5: Regression results for perceived sound quality predicted by different au-
dio stimuli. The dependent variable is the quality score assigned to each audio stimulus. We
trained three different models, one for each data set (speech/music/bird). Each model consists
of two steps, with the first step entering the audio stimulus as a predictor and the second step
entering type of device as a covariate. All models include the control variables gender, age,
and language. All regressions use ordinary least squares. Cluster adjusted standard errors
are indicated in parentheses. The R2 values indicate the percentage of the variance of the
perceived sound quality explained by the respective audio stimuli.

Speech Music Bird

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2

Audio -.905** -.905** -.871** -.871** -.830** -.830**
stimulus (.131) (.131) (.166) (.166) (.171) (.171)

Device .030** .008 .045**
(.473) (.597) (.615)

Controls Included Included Included
Obs. 4259 4259 4259

R2 .820 .821 .760 .761 .690 .692

P-value < 0.05 = *, P-value < 0.01 = **

Study design. In a MUSHRA test, the participants are presented with a set of
differently processed audio files, the audio stimuli. They are asked to rate the quality
of these stimuli on a scale from 0 (bad) to 100 (excellent). To judge whether the
participants are able to distinguish between different audio conditions, a MUSHRA
test includes two additional stimuli: (i) an unaltered version of the original signal (the
so-called reference) and (ii) a worst-case version of the signal, which is created by
artificial degrading the original stimulus (the so-called anchor). In an ideal setting, the
reference should be rated best, the anchor worst.

We want to rank the perceived quality of adversarial examples computed against
Dompteur and Kaldi. For Dompteur, we select three different versions: each model
uses a 200 − 7000Hz band-pass filter, and we vary the degree of the psychoacoustic
filtering (Φ ∈ {0, 6, 12}). For Kaldi, we calculate adversarial examples against the

128

4 Evaluation

unaltered system with psychoacoustic hiding enabled (cf. Section B) to compare against
state-of-the-art adversarial examples.

As the reference, we use the original utterance, on which the adversarial examples
are based. To be a valid comparison, we require the anchor to sound similar, yet noisier
than the adversarial examples. Otherwise, it could be trivially identified and would not
serve as a valid comparison.

Thus, we construct the anchor as follows: For a given set, we scale and sum the noise
of each of the three adversarial examples and add this sum to the original stimulus, such
that 1) each noise signal contributes the same amount of energy and 2) the SNRseg of
the anchor is at least 6dB lower than the SNRseg of any of the adversarial examples
in the set.

We have prepared a MUSHRA test with six test sets based on three different audio
types: two speech sample sets, two music sample sets, and two sample sets with bird
sounds.

These sets were selected among the sets of successful adversarial examples against all
four models. For each set, we picked the samples whose adversarial examples produced
the highest SNR (i. e., the ”cleanest“) for the strongest version of Dompteur (Φ = 12).
The target text remained the same for all adversarial examples, and in all cases, the
attacks were successful within 2000 iterations.

Results. To test our assumptions in the field, we have conducted a large-scale ex-
perimental study. The G*Power 3 analysis [57] identified that a sample size of 324 was
needed to detect a high effect size of η2 = .50 with sufficient power (1−β > .80) for the
main effect of univariate analyses of variance (UNIANOVA) among six experimental
conditions and a significance level of α = .05.

We used Amazon MTurk to recruit 355 participants (µage = 41.61 years, σage =

10.96; 56.60% female). Participants were only allowed to use a computer and no mobile
device. However, they were free to use headphones or speakers as long as they indicated
what type of listening device was used. To filter individuals who did not meet the
technical requirements needed, or did not understand or follow the instructions, we
used a control question to exclude all participants who failed to distinguish the anchor
from the reference correctly.

In the main part of the experiment, participants were presented with six different
audio sets (2 of each: speech/bird/music), each of which contained six audio stim-

129

B Taming Audio Adversarial Examples

uli varying in sound quality. After listening to each sound, they were asked to rank
the individual stimulus by its perceived sound quality. After completing of the tasks,
participants answered demographic questions, were debriefed (MTurk default), and
compensated with 3.00 USD. The participant required on average approximately 20
minutes to finish the test.

In a first step, we first use an UNIANOVA to examine whether there is a significant
difference between the six audio stimuli and the perceived sound quality. Our analysis
reveals a significant main effect of the audio stimulus on the perceived sound quality,
F(5, 12780) = 8335.610, p < .001, η2 = .765. With an alpha level of > 1% for our p-
value and an effect size of η2 > .5, our result shows a high experimental significance [58].
Thus, we can conclude that Dompteur indeed forces adversarial perturbations into
the perceptible acoustic range of human listeners.

To examine whether the effect remains stable across different audio samples and
listening devices, we further conducted multiple regression analyses. We entered the
audio stimuli as our main predictors (first step) and the type of device (second step)
as covariates for each analysis. Our results remain stable across all audio types. The
highest predictive power was found in the speech sets, where 82.1% of the variance is
explained by our regression model, followed by music (76.1%) and bird sets (69.2%) (see
Table 5 for details). Moreover, we found a small yet significant positive coefficient for the
type of device used across all audio types. This finding suggests that headphone users
generally indicate higher quality rankings, potentially due to better sound perceptions.
The results with listening device speaker are presented in Figure 7. Importantly, all
results remain stable across the control variables of age, gender, and first language.

In conclusion, the results strongly support our hypothesis that Dompteur forces
the attacker into the audible range, making the attack clearly noticeable for human
listeners.

5 Related Work

In this section, we summarize research related to our work, surveying recent attacks
and countermeasures.

Audio adversarial examples. Carlini and Wagner [59] introduced targeted audio
adversarial examples for ASR systems. For the attack, they assume a white-box attacker

130

5 Related Work

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

0

25

50

75

100

M
U

S
H

R
A

-P
oi

n
ts

Speech Set 1

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

Speech Set 2

(a) Speech

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

0

25

50

75

100

M
U

S
H

R
A

-P
oi

n
ts

Music Set 1

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

Music Set 2

(b) Music

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

0

25

50

75

100

M
U

S
H

R
A

-P
oi

n
ts

Birds Set 1

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

Birds Set 2

(c) Birds

Figure 7: Ratings of participants with listening device speaker. In the user study, we
tested six audio samples, divided into two samples each of spoken content, music and bird
twittering.

and use an optimization-based method to construct general adversarial examples for
arbitrary target phrases against the ASR system DeepSpeech [32].

Similarly, Schönherr et al. [17] and Yuan et al. [16] have proposed an attack against
the Kaldi [35] toolkit. Both assume a white-box attacker and also use optimization-

131

B Taming Audio Adversarial Examples

based methods to find adversarial examples. Furthermore, the attack from Schön-
herr et al. [17] can optionally compute adversarial examples that are especially un-
obtrusive for human listeners.

Alzantot et al. [60] proposed a black-box attack, which does not require knowledge
about the model. For this, the authors have used a genetic algorithm to create their
adversarial examples for a keyword spotting system. Khare et al. [61] proposed a black-
box attack based on evolutionary optimization, and also Taori et al. [62] presented a
similar approach in their paper.

Recently, Chen et al. [63] and Schönherr et al. [18] published works where they can
calculate over-the-air attacks, where adversarial examples are optimized such that these
remain viable if played via a loudspeaker by considering room characteristics.

Aghakhani et al. [64] presented another line of attack, namely a poisoning attack
against ASR systems. In contrast to adversarial examples, these are attacks against the
training set of a machine learning system, with the target to manipulate the training
data s.t a model that is trained with the poisoned data set misclassifies specific inputs.

Abdullah et al. [19] provides a detailed overview of existing attacks in their system-
ization of knowledge on attacks against speech systems.

Countermeasures. There is a long line of research about countermeasures against
adversarial examples in general and especially in the image domain (e. g., [23, 24,
25]), but most of the proposed defenses were shown to be broken once an attacker
is aware of the employed mechanism. In fact, due to the difficulty to create robust
adversarial example defenses, Carlini et al. proposed guidelines for the evaluation of
adversarial robustness. They list all important properties of a successful countermeasure
against adversarial examples [30]. Compared to the image domain, defenses against
audio adversarial examples remained relatively unnoticed so far. For the audio domain,
only a few works have investigated possible countermeasures. Moreover, these tend to
focus on specific attacks and not adaptive attackers.

Ma et al. [65] describe how the correlation of audio and video streams can be used
to detect adversarial examples for an audiovisual speech recognition task. However, all
of these simple approaches—while reasonable in principle—are specifically trained for
a defined set of attacks, and hence an attacker can easily leverage that knowledge as
demonstrated repeatedly in the image domain [25].

132

5 Related Work

Zeng et al. [66] proposed an approach inspired by multiversion programming. There-
fore, the authors combine the output of multiple ASR systems and calculate a similarity
score between the transcriptions. If these differ too much, the input is assumed to be an
adversarial example. The security of this approach relies on the property that current
audio adversarial examples do not transfer between systems — an assumption that has
been already shown to be wrong in the image domain [45].

Yang et al. [67], also utilize specific properties of the audio domain and uses the
temporal dependency of the input signal. For this, they compare the transcription of
the whole utterance with a segment-wise transcription of the utterance. In the case of a
benign example, both transcriptions should be the same, which will not be the case for
an adversarial example. This proved effective against static attacks, and the authors
also construct and discussed various adaptive attacks but these were later shown to be
insufficient [55].

Besides approaches that aim to harden models against adversarial examples, there is
a line of research that focuses on detecting adversarial examples: Liu and Ditzler [68]
utilizing quantization error of the activations of the neural network, which appear to
be different for adversarial and benign audio examples. Däubener et al. [69] trained
neural networks capable of uncertainty quantification to train a classifier on different
uncertainty measures to detect adversarial examples as outliers. Even if they trained
their classifier on benign examples only, it will most likely not work for any kind of
attack, especially those aware of the detection mechanism.

In contrast, our approach does not rely on detection by augmenting the entire sys-
tem to become more resilient against adversarial examples. The basic principle of this
has been discussed as a defense mechanism in the image domain with JPEG com-
pression [70, 71] as well as in the audio domain by Carlini and Wagner [59], Rajarat-
nam et al. [72], Andronic et al. [73], and Olivier et al. [74]. These approaches, however,
were only used as a pre-processing step to remove semantically irrelevant parts from
the input and thereby destroy adversarial perturbations added by (static) attackers.
In contrast, we aim to train an ASR system that uses the same information set as the
human auditory systems. Consequently, adversarial examples computed against this
system are also restricted to this set, and an attack cannot be hidden in inaudible
ranges. Similar to the referenced approaches, we rely on psychoacoustics and baseband
filtering. However, we do not solely employ this as a pre-processing step but train a new
system with our augmentation data (i.e., removing imperceptible information from the

133

B Taming Audio Adversarial Examples

training set). This allows us to not simply destroy adversarial perturbations but rather
confine the available attack surface.

6 Discussion

We have shown how we can augment an ASR system by utilizing psychoacoustics
in conjunction with a band-pass filter to effectively remove semantically irrelevant
information from audio signals. This allows us to train a hardened system that is more
aligned with human perception.

Model hardening. Our results from Section 4.2 suggest that the hardened models
primarily utilize information available within audible ranges. Specifically, we observe
that models trained on the unmodified data set appear to use any available signals
and utilize information both from audible and non-audible ranges. This is reflected in
the accuracy drop when presented with psychoacoustically filtered input (where only
audible ranges are available). In contrast, the augmented model performs comparably
well on both types of input. Hence, the model focuses on the perceivable audible ranges
and ignores the rest.

Robustness of the system. We demonstrated how we can create a more realistic
attacker, which actively factors in the augmentations during the calculation of adver-
sarial examples. In this case, however, the attack is forced into the audible range. This
makes the attack significant more perceptible — resulting in an average SNRseg drop
of up to 24.33 dB for speech samples. These results also transfer to other types of audio
content (i.e., music and birds tweeting) and are further confirmed by the listening test
conducted in Section 4.4. In summary, the results of these experiments show that an
attack is clearly perceivable. Further, we find that the adversarial examples, calculated
with the adaptive attack, are easily distinguishable from benign audio files by humans.

Implementation choices. In general, our augmentations can be implemented in
the form of low-cost pre-processing steps with no noteworthy performance overhead.
Only the model needs to be retrained from scratch. However, the cost of this could—
in theory—be partially alleviated by transfer learning. We leave this question as an
interesting direction for future research.

134

6 Discussion

Robustness-performance tradeoff. The results of the adaptive attack (cf. Table 2)
show that a larger margin Φ leads to stronger robustness. Specifically, for Φ = 14,
the attacker was unable to find any successful adversarial example in our experiments.
However, this incurs an expected robustness-performance trade-off as previous research
indicates that adversarial robustness is generally correlated with a loss in accuracy [53].

In the case of our strong white-box attacker, we recommend a margin Φ ≥ 12,
which result in a degraded system performance by at least 1.82 percentage points in
terms of the benign WER. In this case, though, we already granted the attacker many
concessions: full access to the model with all parameters, ideal playback (i.e., adversarial
examples are fed directly into the recognizer and are not played over-the-air), and an
easy target. We chose to study our attacker in this setting as this poses the strongest
class of attacks and allows us to gain meaningful insights.

In contrast to white-box attacks, black-box attack don’t have direct access to the
gradient and for example rely on surrogate models [75] or generative algorithms [76] to
construct adversarial examples. Therefore, adversarial examples from these attacks are
typically more conspicuous and can even introduce semantic changes such that humans
can perceive the hidden transcription if they are made aware of it [75]. Considering our
augmentations, we expect that current black-box attacks are able to construct valid
adversarial examples against Dompteur. However, we expect these to be significantly
more noisy (in comparison to the adaptive attacker) as Dompteur forces modifications
to the signal into audible ranges regardless of the underlying attack strategy. Especially
in a realistic over-the-air setting, we suspect much higher distortions since the attacker
is much more constrained. In such a setting, a smaller Φ might also already suffice. We
leave this as an interesting research direction for future work.

Improvement of the attack. The adaptive attack presented in Section 4.3 can
successfully compute adversarial examples, except for very aggressive filtering. While
Figure 4 clearly shows that the attack has converged, we were still unable to find work-
ing adversarial examples. However, other target/input utterance combinations may still
exist, for which the attack works and novel attack strategies should be studied.

Forcing semantics into adversarial examples. We have shown how we can force
adversarial audio attacks into the audible range. This makes them clearly perceivable.
Ultimately, the goal is to push adversarial examples towards the perceptual bound-

135

B Taming Audio Adversarial Examples

ary between original and adversarial message. Intuitively, adversarial examples should
require such extensive modification that a human listener will perceive the target tran-
scription, i. e., that the adversarial perturbation carries semantic meaning. We view
our work as a first successful step into that direction and leave the exploration of this
strategy as an interesting question for future work.

7 Conclusion

In this work, we proposed a broadly applicable design principle for ASR systems that
enables them to resemble the human auditory system more closely. To demonstrate the
principle, we implemented a prototype of our approach in a tool called Dompteur.
More specifically, we augment Kaldi using psychoacoustic filtering in conjunction with
a band-pass filter. In several experiments, we demonstrate that our method renders our
system more robust against adversarial examples, while retaining a high accuracy on
benign audio input.

We have argued that an attacker can find adversarial examples for any kind of
countermeasure, particularly if we assume the attack to have full white-box access to
the system. Specifically, we have calculated adversarial examples for Dompteur via an
adaptive attack, which leverages the full knowledge of the proposed countermeasures.
Although this attack is successful in computing adversarial examples, we show that
the attack becomes much less effective. More importantly, we find that adversarial
examples are of poor quality, as demonstrated by the SNRseg and our listening test.

In summary, we have taken the first steps towards bridging the gap between human
expectations and the reality of ASR systems—hence taming adversarial attacks to a
certain extent by robbing them of their stealth abilities.

Acknowledgments

We would like to thank our shepherd Xiaoyu Ji and the anonymous reviewers for their
valuable comments and suggestions. We also thank our colleagues Nils Bars, Merlin
Chlosta, Sina Däubener, Asja Fischer, Jan Freiwald, Moritz Schlögel, Steffen Zeiler
for their feedback and fruitful discussions. This work was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy – EXC-2092 CaSa – 390781972.

136

7 Conclusion

References

[1] Michael J Pazzani and Daniel Billsus. Content-Based Recommendation Systems.
In The Adaptive Web. Springer, 2007.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2012.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, et al. Human-level Control through Deep Reinforcement Learning.
nature, 2015.

[4] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the Game of Go with Deep Neural Networks
and Tree Search. nature, 2016.

[5] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. Dota 2 with Large Scale Deep Reinforcement Learning. Computing
Research Repository (CoRR), abs/1912.06680, 2019.

[6] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster Level in StarCraft II using Multi-Agent Reinforce-
ment Learning. nature, 2019.

[7] Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent
Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex
Bridgland, et al. Improved Protein Structure Prediction using Potentials from
Deep Learning. nature, 2020.

[8] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace:
Closing the Gap to Human-Level Performance in Face Verification. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

137

B Taming Audio Adversarial Examples

[9] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas
Stolcke, Dong Yu, and Geoffrey Zweig. Achieving Human Parity in Conversational
Speech Recognition. Computing Research Repository (CoRR), abs/1610.05256,
2016.

[10] Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer Gabriel,
Qing Liu, Jeff Nunn, Behnam Hedayatnia, Ming Cheng, Ashish Nagar, et al. Con-
versational AI: The Science Behind the Alexa Prize. In Alexa Prize, 2017.

[11] Lauren Goode. Amazon’s Alexa will now lock your door for you (if you
have a ’smart’ lock). https://www.theverge.com/circuitbreaker/2016/7/28/123
05678/amazon-alexa-works-with-august-smart-lock-door-WiFi-bridge. Accessed:
2021-06-02.

[12] Stephen Shankland. Meet Tesla’s self-driving car computer and its two AI
brains. https://www.cnet.com/news/ meet-tesla-self-driving-car-computer-and-
its-two-ai-brains/. Accessed: 2021-06-02.

[13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing Properties of Neural Networks.
In International Conference on Learning Representations (ICLR), 2014.

[14] Liwei Song and Prateek Mittal. POSTER: Inaudible Voice Commands. In ACM
Conference on Computer and Communications Security (CCS), 2017.

[15] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. DolphinAttack: Inaudible Voice Commands. In ACM Conference
on Computer and Communications Security (CCS), 2017.

[16] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai Chen,
Shengzhi Zhang, Heqing Huang, Xiaofeng Wang, and Carl A. Gunter. Comman-
derSong: A Systematic Approach for Practical Adversarial Voice Recognition. In
USENIX Security Symposium, 2018.

[17] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and Dorothea
Kolossa. Adversarial Attacks Against Automatic Speech Recognition Systems
via Psychoacoustic Hiding. In Symposium on Network and Distributed System
Security (NDSS), 2019.

138

https://www.theverge.com/circuitbreaker/2016/7/28/12305678/amazon-alexa-works-with-august-smart-lock-door-WiFi-bridge
https://www.theverge.com/circuitbreaker/2016/7/28/12305678/amazon-alexa-works-with-august-smart-lock-door-WiFi-bridge
https://www.cnet.com/news/meet-tesla-self-driving-car-computer-and-its-two-ai-brains/
https://www.cnet.com/news/meet-tesla-self-driving-car-computer-and-its-two-ai-brains/

7 Conclusion

[18] Lea Schönherr, Thorsten Eisenhofer, Steffen Zeiler, Thorsten Holz, and Dorothea
Kolossa. Imperio: Robust Over-the-Air Adversarial Examples for Automatic
Speech Recognition Systems. In Annual Computer Security Applications Con-
ference (ACSAC), 2020.

[19] Hadi Abdullah, Kevin Warren, Vincent Bindschaedler, Nicolas Papernot, and
Patrick Traynor. SoK: The Faults in our ASRs: An Overview of Attacks against
Automatic Speech Recognition and Speaker Identification Systems. In IEEE Sym-
posium on Security and Privacy (S&P), 2020.

[20] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. The Limitations of Deep Learning in Adversarial
Settings. In IEEE European Symposium on Security and Privacy (EuroS&P),
2015.

[21] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
Fool: A Simple and Accurate Method to Fool Deep Neural Networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[22] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural
Networks. In IEEE Symposium on Security and Privacy (S&P), 2017.

[23] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On
Detecting Adversarial Perturbations. In International Conference on Learning
Representations (ICLR), 2017.

[24] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner.
Detecting Adversarial Samples from Artifacts. Computing Research Repository
(CoRR), abs/1703.00410, 2017.

[25] Nicholas Carlini and David Wagner. Adversarial Examples are Not Easily De-
tected: Bypassing Ten Detection Methods. In ACM Workshop on Artificial Intel-
ligence and Security (AISec), 2017.

[26] Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, and George E.
Dahl. Motivating the Rules of the Game for Adversarial Example Research. Com-
puting Research Repository (CoRR), abs/1807.06732, 2018.

[27] Adi Shamir, Itay Safran, Eyal Ronen, and Orr Dunkelman. A Simple Explana-
tion for the Existence of Adversarial Examples with Small Hamming. Computing

139

B Taming Audio Adversarial Examples

Research Repository (CoRR), abs/1901.10861, 2019.

[28] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. Adversarial Examples Are Not Bugs, They Are
Features. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[29] Brian B. Monson, Eric J. Hunter, Andrew J. Lotto, and Brad H. Story. The
Perceptual Significance of High-frequency Energy in the Human Voice. Frontiers
in Psychology, 2014.

[30] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, and Aleksander Madry. On Eval-
uating Adversarial Robustness. Computing Research Repository (CoRR),
abs/1902.06705, 2019.

[31] Herve A. Bourlard and Nelson Morgan. Connectionist Speech Recognition: A Hy-
brid Approach. Kluwer Press, 1994.

[32] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and An-
drew Y. Ng. Deep Speech: Scaling Up End-to-End Speech Recognition. Computing
Research Repository (CoRR), abs/1412.5567, 2014.

[33] Alex Graves and Navdeep Jaitly. Towards End-to-End Speech Recognition with
Recurrent Neural Networks. In International Conference on Machine Learning
(ICML), 2014.

[34] Jian Kang, Wei-Qiang Zhang, Wei-Wei Liu, Jia Liu, and Michael T. Johnson.
Advanced Recurrent Network-Based Hybrid Acoustic Models for Low Resource
Speech Recognition. EURASIP Journal on Audio, Speech, and Music Processing,
2018.

[35] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
Jan Silovsky, Georg Stemmer, and Karel Vesely. The Kaldi Speech Recognition
Toolkit. In IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), 2011.

[36] Jun Du, Yan-Hui Tu, Lei Sun, Feng Ma, Hai-Kun Wang, Jia Pan, Cong Liu,
Jing-Dong Chen, and Chin-Hui Lee. The USTC-iFlytek System for CHiME-4

140

7 Conclusion

Challenge. In ISCA Workshop on Speech Processing in Everyday Environments
(CHiME), 2016.

[37] Naoyuki Kanda, Rintaro Ikeshita, Shota Horiguchi, Yusuke Fujita, Kenji Naga-
matsu, Xiaofei Wang, Vimal Manohar, Nelson Enrique Yalta Soplin, Matthew
Maciejewski, Szu-Jui Chen, et al. The Hitachi/JHU CHiME-5 System: Advances
in Speech Recognition for Everyday Home Environments Using Multiple Micro-
phone Arrays. In ISCA Workshop on Speech Processing in Everyday Environments
(CHiME), 2018.

[38] Ivan Medennikov, Ivan Sorokin, Aleksei Romanenko, Dmitry Popov, Yuri
Khokhlov, Tatiana Prisyach, Nikolay Malkovskii, Vladimir Bataev, Sergei
Astapov, Maxim Korenevsky, and Alexander Zatvornitskiy. The STC System for
the CHiME 2018 Challenge. In ISCA Workshop on Speech Processing in Everyday
Environments (CHiME), 2018.

[39] Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, and Colin Raffel.
Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech
Recognition. In International Conference on Machine Learning (ICML), 2019.

[40] Hadi Abdullah, Washington Garcia, Christian Peeters, Patrick Traynor, Kevin
R. B. Butler, and Joseph Wilson. Practical Hidden Voice Attacks against Speech
and Speaker Recognition Systems. In Symposium on Network and Distributed
System Security (NDSS), 2019.

[41] Joseph Szurley and J. Zico Kolter. Perceptual Based Adversarial Audio Attacks.
Computing Research Repository (CoRR), abs/1906.06355, 2019.

[42] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim rndi, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion Attacks against Machine Learn-
ing at Test Time. In Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases (ECML PKDD), 2013.

[43] ISO Central Secretary. Information Technology – Coding of Moving Pictures and
Associated Audio for Digital Storage Media at Up to 1.5 Mbits/s – Part3: Audio.
Standard 11172-3, International Organization for Standardization, 1993.

[44] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box Adver-
sarial Attacks with Limited Queries and Information. In International Conference

141

B Taming Audio Adversarial Examples

on Machine Learning (ICML), 2018.

[45] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability
in Machine Learning: From Phenomena to Black-Box Attacks using Adversarial
Samples. Computing Research Repository (CoRR), abs/1605.07277, 2016.

[46] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Stealing Machine Learning Models via Prediction APIs. In USENIX Security
Symposium, 2016.

[47] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Ce-
lik, and Ananthram Swami. Practical Black-Box Attacks Against Machine Learn-
ing. In ACM Symposium on Information, Computer and Communications Security
(ASIACCS), 2017.

[48] Binghui Wang and Neil Zhenqiang Gong. Stealing Hyperparameters in Machine
Learning. In IEEE Symposium on Security and Privacy (S&P), 2018.

[49] Auguste Kerckhoffs. La Cryptographic Militaire. Journal des Sciences Militaires,
1883.

[50] Gonzalo Navarro. A Guided Tour to Approximate String Matching. ACM Com-
puting Surveys (CSUR), 2001.

[51] Stephen Voranl and Connie Sholl. Perception-Based Objective Estimators of
Speech. In IEEE Workshop on Speech Coding for Telecommunications: Speech
Coding for Interoperable Global Colmmunications (SCFT), 1995.

[52] Wonho Yang. Enhanced Modified Bark Spectral Distortion (EMBSD): An Objec-
tive Speech Quality Measure Based on Audible Distortion and Cognition Model.
PhD thesis, Temple University, 1999.

[53] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. Robustness May be at Odds with Accuracy. In International
Conference on Learning Representations (ICLR), 2019.

[54] Douglas B. Paul and Janet M. Baker. The Design for the Wall Street Journal-
Based CSR Corpus. In Workshop on Speech and Natural Language, 1992.

[55] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On
Adaptive Attacks to Adversarial Example Defenses. In Advances in Neural Infor-

142

7 Conclusion

mation Processing Systems (NeurIPS), 2020.

[56] Nadja Schinkel-Bielefeld, Netaya Lotze, and Frederik Nagel. Audio Quality Eval-
uation by Experienced and Inexperienced Listeners. In International Congress on
Acoustics (ICA), 2013.

[57] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. Statistical
Power Analyses using G* Power 3.1: Tests for Correlation and Regression Analy-
ses. Behavior Research Methods, 2009.

[58] John T.E. Richardson. Eta Squared and Partial Eta Squared as Measures of Effect
Size in Educational Research. Educational Research Review, 2011.

[59] Nicholas Carlini and David Wagner. Audio Adversarial Examples: Targeted At-
tacks on Speech-to-Text. In IEEE Deep Learning and Security Workshop (DLS),
2018.

[60] Moustafa Alzantot, Bharathan Balaji, and Mani Srivastava. Did you hear that?
Adversarial Examples Against Automatic Speech Recognition. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

[61] Senthil Mani Shreya Khare, Rahul Aralikatte. Adversarial Black-Box Attacks on
Automatic Speech Recognition Systems using Multi-Objective Evolutionary Op-
timization. In Conference of the International Speech Communication Association
(INTERSPEECH), 2019.

[62] Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri. Targeted Ad-
versarial Examples for Black Box Audio Systems. In IEEE Deep Learning and
Security Workshop (DLS), 2019.

[63] Tao Chen, Longfei Shangguan, Zhenjiang Li, and Kyle Jamieson. Metamorph:
Injecting Inaudible Commands Into Over-the-Air Voice Controlled Systems. In
Symposium on Network and Distributed System Security (NDSS), 2020.

[64] Hojjat Aghakhani, Thorsten Eisenhofer, Lea Schönherr, Dorothea Kolossa,
Thorsten Holz, Christopher Kruegel, and Giovanni Vigna. VENOMAVE: Clean-
Label Poisoning Against Speech Recognition. Computing Research Repository
(CoRR), abs/2010.10682, 2020.

143

B Taming Audio Adversarial Examples

[65] Pingchuan Ma, Stavros Petridis, and Maja Pantic. Detecting Adversarial Attacks
On Audio-Visual Speech Recognition. In International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021.

[66] Qiang Zeng, Jianhai Su, Chenglong Fu, Golam Kayas, and Lannan Luo. A Mul-
tiversion Programming Inspired Approach to Detecting Audio Adversarial Exam-
ples. In Conference on Dependable Systems and Networks (DSN), 2019.

[67] Zhuolin Yang, Bo Li, Pin-Yu Chen, and Dawn Song. Characterizing Audio Ad-
versarial Examples Using Temporal Dependency. In International Conference on
Learning Representations (ICLR), 2019.

[68] Heng Liu and Gregory Ditzler. Detecting Adversarial Audio via Activation Quan-
tization Error. In International Joint Conference on Neural Networks (IJCNN),
2020.

[69] Sina Däubener, Lea Schönherr, Asja Fischer, and Dorothea Kolossa. Detect-
ing Adversarial Examples for Speech Recognition via Uncertainty Quantification.
In Conference of the International Speech Communication Association (INTER-
SPEECH), 2020.

[70] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M. Roy. A Study
of the Effect of JPG Compression on Adversarial Images. Computing Research
Repository (CoRR), abs/1608.00853, 2016.

[71] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li,
Li Chen, Michael E. Kounavis, and Duen Horng Chau. Shield: Fast, Practical
Defense and vaccination for Deep Learning using JPEG Compression. In Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), 2018.

[72] Krishan Rajaratnam, Kunal Shah, and Jugal Kalita. Isolated and Ensemble Au-
dio Preprocessing Methods for Detecting Adversarial Examples against Automatic
Speech Recognition. In Conference on Computational Linguistics and Speech Pro-
cessing (ROCLING), 2018.

[73] Iustina Andronic, Ludwig Kürzinger, Edgar Ricardo Chavez Rosas, Gerhard
Rigoll, and Bernhard U Seeber. MP3 Compression to Diminish Adversarial Noise
in End-to-End Speech Recognition. In International Conference on Speech and
Computer, 2020.

144

7 Conclusion

[74] Raphael Olivier, Bhiksha Raj, and Muhammad Shah. High-Frequency Adversarial
Defense for Speech and Audio. In International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2021.

[75] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue Zhao, Shengzhi Zhang, Kai
Chen, and XiaoFeng Wang. Devil’s Whisper: A General Approach for Physical
Adversarial Attacks against Commercial Black-box Speech Recognition Devices.
In USENIX Security Symposium, 2020.

[76] Tianyu Du, Shouling Ji, Jinfeng Li, Qinchen Gu, Ting Wang, and Raheem Beyah.
SirenAttack: Generating Adversarial Audio for End-to-End Acoustic Systems. In
ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS), 2020.

145

B Taming Audio Adversarial Examples

A Targets

Target utterances for the experiments with the adaptive attacker. For the experiments
we select 50 utterances as target with an approximate length of 5s from the WSJ speech
corpus test set eval92.

Utterance Length Utterance Length Utterance Length

440c0407 5.47s 440c040i 5.07s 440c040j 4.08s
441c0409 4.91s 441c040c 5.57s 441c040l 5.26s
441c040m 5.50s 441c040s 4.58s 441c040y 4.08s
442c0402 5.14s 442c040c 5.69s 442c040d 4.80s
442c040h 4.63s 442c040k 5.37s 442c040w 5.21s
443c0402 5.05s 443c040b 4.69s 443c040c 4.73s
443c040d 5.54s 443c040j 4.61s 443c040l 4.23s
443c040p 4.10s 443c040v 4.82s 443c0417 4.55s
444c0407 4.76s 444c0409 5.20s 444c040i 4.98s
444c040n 5.18s 444c040u 4.37s 444c040w 5.52s
444c040z 4.29s 444c0410 4.16s 445c0409 5.43s
445c040j 4.99s 445c040l 5.64s 445c040w 4.92s
445c040x 4.68s 445c0411 4.34s 446c0402 5.59s
446c040b 4.10s 446c040d 5.18s 446c040e 4.94s
446c040f 4.66s 446c040o 5.33s 446c040p 5.04s
446c040s 5.18s 446c040v 4.07s 447c040g 4.64s
447c040p 5.23s 447c040z 4.68s

146

Verifiable and Provably Secure
Machine Unlearning

Publication Data

Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga Ohri-
menko, and Nicolas Papernot. Verifiable and Provably Secure Machine Unlearning.
Computing Research Repository (CoRR), 2022.

147

Verifiable and Provably Secure Machine Unlearning

Thorsten Eisenhofer1,∗, Doreen Riepel1, Varun Chandrasekaran2,3, Esha Ghosh2,
Olga Ohrimenko4, Nicolas Papernot5,6

1 Ruhr University Bochum
2 Microsoft Research

3 University of Illinois Urbana-Champaign
4 The University of Melbourne

5 University of Toronto
6 Vector Institute

Abstract

Machine unlearning aims to remove points from the training dataset of a machine
learning model after training; for example when a user requests their data to be deleted.
While many machine unlearning methods have been proposed, none of them enable
users to audit the procedure. Furthermore, recent work shows a user is unable to verify
if their data was unlearnt from an inspection of the model alone. Rather than reasoning
about model parameters, we propose to view verifiable unlearning as a security problem.
To this end, we present the first cryptographic definition of verifiable unlearning to
formally capture the guarantees of a machine unlearning system. In this framework, the
server first computes a proof that the model was trained on a dataset D. Given a user’s
data point d requested to be deleted, the server updates the model using an unlearning
algorithm. It then provides a proof of the correct execution of unlearning and that
d /∈ D′, where D′ is the new training dataset. Our framework is generally applicable to
different unlearning techniques that we abstract as admissible functions. We instantiate
the framework, based on cryptographic assumptions, using SNARKs and hash chains.
Finally, we implement the protocol for three different unlearning techniques (retraining-
based, amnesiac, and optimization-based) to validate its feasibility for linear regression,
logistic regression, and neural networks.

∗ Work done while the author was interning at Vector Institute.

C Verifiable and Provably Secure Machine Unlearning

1 Introduction

The right to be forgotten entitles individuals to self-determine the possession of their
private data and compel its deletion. In practice, this is now mandated by recent
regulations like the GDPR [1], CCPA [2], or PIPEDA [3]. Consider the case where
a company or service provider collects data from its users. These regulations allow
users to request a deletion of their data, and legally compels the company to fulfil
the request. However, this can be challenging when the data is used for downstream
analyses, e.g., training machine learning (ML) models, where the relationship between
model parameters and the data used to obtain them is complex [4]. In particular, ML
models are known to memorize information from their training set [5, 6], resulting in
a myriad of attacks against the privacy of training data [7, 8].

Thus, techniques have been introduced for unlearning: a trained model is updated to
remove the influence a training point had on the model’s parameters and predictions [9].
Regardless of the particular approach, existing techniques [10, 11, 12, 13, 14, 15, 16]
suffer from one critical limitation: they are unable to provide the user with a proof
that their data was indeed unlearnt. Put another way, the user is asked to blindly
trust that the server executed the unlearning algorithm to remove their data with
no ability to verify this. This is problematic because dishonest service providers may
falsify unlearning to avoid paying the large computational costs or to maintain model
utility [17, 18].

Additionally, verifying that a point is unlearnt is non-trivial from the user’s per-
spective. A primary reason is that users (or third-party auditors) cannot determine
whether a data point is unlearnt (or not) by comparing the model’s predictions or
parameters before and after the claimed unlearning. The complex relationship between
training data, models’ parameters, and their predictions make it difficult to isolate the
effects of any training point. In fact, prior work [19, 20] demonstrates that a model’s
parameters can be identical when trained with or without a data point.

To address these concerns, we propose a cryptographic approach to verify unlearning.
Rather than trying to verify unlearning by examining changes in the model, we ask
the service provider (i.e., the server) to present a cryptographic proof that an agreed-
upon unlearning process was executed. This leads us to view unlearning as a security
problem that we aim to solve with formal guarantees.

150

1 Introduction

In this paper we propose the first formal security definition of verifiable machine
unlearning. Our framework describes an iteration-based protocol and requires the server
to prove that it has honestly updated the model and dataset in each iteration, either
due to training with new data or unlearning previously used data. Only then does
the user have sufficient guarantees about deletion of their data. Under this definition,
we can instantiate protocols using any unlearning technique and any cryptographic
primitives that have appropriate security guarantees.

We identified several challenges while developing the framework that we believe are
inherent to unlearning.

1. Verifying unlearning cannot be solved by naive one-shot verifiable computation
as it requires a user to be able to verify that their data was not re-added at later
stages. Hence, the definition has to capture all model updates due to new points
added or points being deleted.

2. The relationship between an updated model and the evolving dataset needs to be
formally captured for verification. For example, a naive way would be to define
this relationship as a re-training function, i.e., the updated model is the result
of training on the evolved dataset. This can be viewed as “exact unlearning”.
However, since other (approximate) unlearning techniques exist, we define this
relationship as a set of functions that we call admissible functions. This abstrac-
tion captures the relationship between models and datasets via initialization,
training and unlearning functions.

3. As we observe above, the security definition needs to capture consistency of
data during training and unlearning, and across model updates and evolving
datasets. Though this can be done by passing the whole dataset between the
verification steps (training and unlearning) and sending data to the user, we aim
to verify consistency in a succinct manner. To this end, we define a strong notion
of extractor-based security, capturing that the server must know some underlying
dataset in order to compute a valid proof.

Our framework is general and we later demonstrate its applicability to three different
unlearning techniques. Notably, none of these have been proved using verifiable com-
putation before. We focus our discussion below on re-training based unlearning, one of

151

C Verifiable and Provably Secure Machine Unlearning

the unlearning techniques, and give an overview of our framework. In this approach,
the server retrains a model without using a data point d that needs to be unlearnt.

In our framework, we identify the following guarantees that need to be satisfied:
(a) the model was trained from some dataset and (b) the user’s data point is not
present in this dataset. Thus, the framework has two major components. First, the
server computes a proof of training whenever data points are added to the model’s
training data: this establishes that it trained the model on a particular dataset. Second,
when a user submits a request to unlearn a specific data point, the server computes a
proof of unlearning. It proves that the model was updated addressing the request, and
additionally provides the user with a proof that their data point was indeed unlearnt
and not part of the training set. These proofs should also ensure that no data point
can be added back to the training set after it was unlearnt.

We present a fully instantiated protocol in our framework. This instantiation uses
SNARK-based verifiable computation for the proof of model updates induced by train-
ing or unlearning and hash chains for the proof of non-membership in a training set
since the time unlearning request was made.

Finally, we provide the first implementation of verifiable unlearning based on cryp-
tographic primitives. In particular, we use Spartan [21] for verifiable training and un-
learning. Spartan is a transparent SNARK, i.e., it does not require a trusted setup,
which is desirable for our purpose. We consider three unlearning techniques: retraining-
based unlearning, amnesiac unlearning [14] and optimization-based unlearning [22, 23].
We demonstrate the versatility and scalability of our construction on a variety of bi-
nary classification tasks from the PMLB benchmark suite [24], using linear regression,
logistic regression, and simple neural networks.

Contributions. We make the following contributions:

• Formal framework. We introduce a general framework to construct protocols for
verifiable machine unlearning. Our framework is designed to be general enough
to capture different unlearning algorithms and secure primitives.

• Security definition of verifiable machine unlearning. We then propose a formal
security definition of a verifiable machine unlearning scheme. This game-based
definition allows one to prove security of their instantiation of the unlearning

152

2 Background

protocol. Our framework models verifiable unlearning as a 2-party protocol (ex-
ecuted between the server and users).

• Instantiation. We present a fully instantiated protocol in our framework. This
construction is based on a generic interface for training and unlearning and thus
applicable to any training and unlearning algorithm (as captured by our admis-
sible functions abstraction).

• Practical implementation. We implement the protocol’s main functionality, study
its applicability to three unlearning techniques, different classes of ML models
and benchmark datasets. We observe that compared to training verification, ver-
ifying unlearning adds a small cost and efficiency of unlearning depends on the
unlearning technique.

2 Background

In this section, we discuss the preliminaries needed to understand the contributions of
our work.

Notation. Throughout the paper, let λ denote the security parameter. We call a
function negligible in λ—denoted by negl(λ)—if it is smaller than the inverse of any
polynomial for all large enough values of λ. [m : n] denotes the set {m,m+1, ..., n} for
integers m < n. For m = 1, we simply write [n]. y ← M(x1, x2, . . .) denotes that on input
x1, x2, . . ., the probabilistic algorithm M returns y. An adversary A is a probabilistic
algorithm, and is efficient or Probabilistic Polynomial-Time (PPT) if its run-time is
bounded by some polynomial in the length of its input. We will use code-based games,
where Pr[G⇒ 1] denotes the probability that the final output of game G is 1.

2.1 Machine Learning Preliminaries

Supervised machine learning. Supervised machine learning (ML) is the process
of learning a parameterized function fθ (often called a model) that is able to predict an
output (from the space of outputs Y) given an input (from the space of inputs X), i.e.,
fθ : X → Y . Commonly learnt functions include linear regression, logistic regression,
and feed-forward neural networks.

153

C Verifiable and Provably Secure Machine Unlearning

The parameters of this function are typically optimized using methods such as
stochastic gradient descent (SGD). Let θinitial be randomly initialized parameters and
D = {d1, . . . , dn} a set of training data points, where each d = (dx, dy) ∈ X × Y . Dur-
ing training we iteratively update parameters as θ′ := θ − η∇θL(fθ(dx), dy) for points
d ∈ D where L is a suitably chosen loss function (e.g., cross-entropy loss) and η the
learning rate.

In SGD, the update is calculated for a randomly chosen input d ∈ D in each step.
In practice, this is often extended to batches of data points in order to reduce the
variance of each update. Often, multiple passes (called epochs) are repeated through
the dataset. We can describe the full process of training a model m (interchangeably
used with θm) by

θm := θinitial +
∑
e∈[E]

∑
d∈D

∆e,d ,

with E being the number of epochs and ∆e,d the update on the model’s parameter
from data point d in epoch e.

Machine unlearning. In machine unlearning the goal is to design algorithms that
enable an ML model (specifically, its parameters) to forget the contribution of a (subset
of) data point(s). The canonical approach for this is to naively retrain the model
from scratch. Hence, removing a data point d∗ from a model m with retraining-based
unlearning can be described as

θm′ := θinitial +
∑
e∈[E]

∑
d∈D\{d∗}

∆e,d .

As the resulting model θm′ is completely devoid of data point d∗ (by construction),
this is an example for exact unlearning [11, 9, 25, 26], which is desirable but often
prohibitively expensive.

More practical unlearning techniques where the contribution of a data point cannot
be completely removed and the guarantees tolerate some error [12, 27, 28, 15, 16, 13, 14]
are commonly referred to as approximate unlearning. An example for this is amnesiac
unlearning [14]. Given a model m, removing a data point d∗ with amnesiac unlearning
means that we compute

θm′ := θm −
∑
e∈[E]

∆e,d∗ .

154

2 Background

In other words, to unlearn data point d∗, we remove the updates to the model’s
parameters that were directly computed on that data point for all training epochs E.
Yet, amnesiac unlearning only provides approximate guarantees since updates from
unlearnt data points indirectly also influence updates from later points during the
iterative nature of the training [28].

Other approaches for approximate unlearning formulate unlearning as an optimiza-
tion problem [22, 23] (similar to training). In every step, instead of reducing the loss
of a data point, we increase it. We refer to this as optimization-based unlearning. For-
mally, we iteratively compute an update ∆e,d∗ for the current model that is subtracted
from its parameters:

θm′ := θm −
∑
e∈[Ê]

∆e,d∗ ,

where Ê denotes the number of unlearning epochs and ∆e,d∗ the update from data point
d∗ in epoch e. For model parameters θ (in epoch e), we define ∆e,d∗ := −η̂∇θL(fθ(d∗x), d∗y)
with unlearning rate η̂ and loss function L.

2.2 Cryptographic Preliminaries

Collision-resistant hash functions. A function Hash : {0, 1}n → {0, 1}κ is collision-
resistant if

• It is length-compressing, i.e., κ < n.

• It is hard to find collisions, i.e., for all PPT adversaries A, and for all security
parameters λ,

Pr

[
(x0, x1)← A(1λ,Hash) :

x0 6= x1 ∧ Hash(x0) = Hash(x1)

]
≤ negl(λ) .

Proof systems. An interactive proof system describes a protocol between a prover
and a verifier, where the prover wants to convince the verifier that some statement ϕ

for a given polynomial time decidable relation R is true. The prover holds a witness ω

for the statement. We can then express R with a circuit that takes public and private
inputs (statement and witness) and returns true if the input is in the relation. In this
work we are concerned with non-interactive proof systems. A Succinct Non-Interactive

155

C Verifiable and Provably Secure Machine Unlearning

Argument of Knowledge (SNARK) allows the prover to non-interactively prove the
statement with a short (or succinct) cryptographic proof which can be verified in time
sublinear in the size of the statement. We denote a SNARK by Π and define it by the
three algorithms (Π.Setup,Π.Prove,Π.Vrfy). More formally,

• pp ← Π.Setup(1λ, R): The setup algorithm outputs public parameters pp for a
polynomial-time decidable relation R.

• π ← Π.Prove(R, pp, ϕ, ω): The prover algorithm takes as input the pp and (ϕ, ω) ∈
R and returns an argument π, where ϕ is termed the statement and ω the witness.

• b ← Π.Vrfy(R, pp, ϕ, π): The verification algorithm takes the pp, a statement ϕ

and an argument π and returns a bit b, where b = 1 indicates success and b = 0

indicates failure.

Perfect completeness. Given any true statement, an honest prover should be able to
convince an honest verifier. More formally, let R be a sequence of families of efficiently
decidable relations R. For all R ∈ R and (ϕ, ω) ∈ R

Pr

[
Π.Vrfy(R, pp, ϕ, π)

∣∣∣∣∣pp← Π.Setup(1λ, R);

π ← Π.Prove(R, pp, ϕ, ω)

]
= 1 .

Computational soundness. We say that Π is sound if it is not possible to prove a
false statement. Let LR be the language consisting of statements for which there exists
corresponding witnesses in R. For a relation R ∼ R, we require that for all non-uniform
PPT adversaries A

Pr

[
ϕ /∈ LR and

Π.Vrfy(R, pp, ϕ, π)

∣∣∣∣∣pp← Π.Setup(1λ, R);

(ϕ, π)← A(R, pp)

]
≤ negl(λ) .

We further define the notion of witness extractability or knowledge soundness.

Computational knowledge soundness. Π satisfies computational knowledge soundness if
there exists an extractor that can compute a witness whenever the adversary produces
a valid argument. More formally, for a relation R ∼ R, we require that for all non-
uniform PPT adversaries A there exists a non-uniform PPT extractor E such that

Pr

[
(ϕ, ω) /∈ R and
Π.Vrfy(R, pp, ϕ, π)

∣∣∣∣∣pp← Π.Setup(1λ, R);

((ϕ, π);ω)← (A‖E)(R, pp)

]
≤ negl(λ) .

156

3 Verifiable Machine Unlearning

We say a SNARK Π is secure if it satisfies perfect completeness, computational
soundness and knowledge soundness.

3 Verifiable Machine Unlearning

We consider the following ecosystem: there are many users, each of whom has access
to a set of data points (or dataset). They share their data with a server which uses it
to learn an ML model. Users can send requests to either delete or add new data. We
focus on ensuring that users can verify that their deletion requests are met.

Threat model. We assume the server is malicious, i.e., it may not execute unlearn-
ing. Reasons for this include the server being unwilling to tolerate a degradation in
the model’s performance after data deletion [17, 18], or pay the computational penalty
associated with updating the model [11, 14]. To this end, our focus is to develop a
method to verify that the server adheres to users’ requests.

Scope and assumptions.

1. Out-of-band authentication. We assume that the users have some (out-of-band)
mechanism to authenticate to the server. A server will honor unlearning requests
from legitimate users only. Since this can be done using standard authentication
mechanisms, e.g., digital signatures, we do not model this explicitly. This would
prevent a malicious user deleting a point belonging to a different user.

2. Uniqueness of data points. We need a mechanism to attribute data points to
users: when a user requests their data point to be deleted, it should be clearly
identifiable. In practice, multiple users could have the same data point making
identification challenging. To resolve this problem, we assume the server prepends
a unique identifier to each data point. We refer to such a unique representation
as a data record.

3. Sybil data-records. A malicious server can re-add a data point that was deleted
(e.g., by creating a fake user or colluding with an existing user). This would
result in a different data record as it would have a different identifier. We note
that, in principle, detecting this behaviour is possible but as there are legiti-
mate scenarios where two users may have the same data points, this needs to

157

C Verifiable and Provably Secure Machine Unlearning

be done in an application-specific manner. In scenarios where data points are
unique (e.g., in medical settings), this can be trivially detected. For other sce-
narios, we can define some metric and threshold to determine when data-points
d and d are considered to be the same (e.g., when dist(d, d) < c, where c and
dist are application-specific). This distance function can then be used to detect
misbehaviour by checking if a new point is similar to those previously removed
(e.g., using approximate hashing).

Necessity of auditable algorithmic definitions. In the status quo, there is no
rigorous way for the user to verify if the model being used is devoid of their data. One
naive solution would be to provide the user with the trained parameters (including
random seeds) of the model and all the data, and request them to locally re-run the
training and compare their model parameters to the server’s. Another method could
be based on influence techniques [4] to understand if their data contributes to these
parameters. Both of these naive solutions suffer from a fundamental problem: it is
possible to arrive to same model parameters even if data was deleted. For example,
recent work by Shumailov et al. [19] and Thudi et al. [20] describe how a user’s con-
tribution (towards model parameters) can be approximated from other entries in a
dataset, rendering such approaches insufficient: the server can claim to have obtained
the exact same model parameters from a number of different datasets. Therefore, our
approach relies on proving the execution of an unlearning algorithm. To prove that a
particular record was unlearnt correctly, we further need to trust that the model upon
which unlearning is performed was derived from that particular record. Thus, we also
require to prove that the training procedure was executed correctly. To capture this
formally, we propose a generic interface for admissible functions to describe training
and unlearning procedures (cf. Appendix 4). These procedures are agreed upon by the
users and server beforehand and are part of the public parameters of a protocol.

Desiderata. From the discussion thus far, we unearth two main requirements to
achieve our goals.

D1. Given an ML model that was trained on a dataset D and data points are added,
we require a proof of training to establish that the updated model was obtained
from the updated dataset by executing a training function all participating parties
agreed on.

158

4 Our Framework

D2. In a similar fashion, we want to prove the removal of data points. Thus, given
an ML model that was trained on a dataset D, machine unlearning mechanisms
update this model by (conceptually) removing data points from the set D. Then,
we require a proof of unlearning to establish that the updated model was obtained
from the updated dataset using an agreed-upon unlearning function. Further, for
each removed data point d, we require a proof that d is not part of the (updated)
training data D′ (i.e., d /∈ D′), which we denote by a proof of non-membership.

To guarantee the absence of deleted data points even after future model updates,
it is also necessary to take into account all updates to the model, and not only those
referring to unlearning (i.e., to prevent a server from re-adding an unlearnt data record).

Additionally, it needs to be ensured that the server uses the most recent model for
inference. However, we consider proving and verifying inference an interesting problem
which is related to, but also independent of unlearning. We note that there exist several
works addressing this problem which we discuss in Section 8.

4 Our Framework

We now present our formal framework for verifiable machine unlearning. This frame-
work defines a generic interface for verifiable machine unlearning capturing desiderata
D1 and D2 (cf. Section 3) to verify training and unlearning. It allows various instan-
tiations, e.g., using different unlearning techniques or cryptographic primitives. We
consider protocols for verifiable machine unlearning that are executed interactively by
the two roles introduced in the previous section: a set of users U and a server S.

Dataset. Let D be the distribution of data points. Each user u ∈ U possesses a
set of data points D̂u ∼ D. At the server side, there is an initially empty dataset
D0 = ∅ (which is later populated for training an ML model). During the execution of
the protocol, users can request to add or delete their data points. Different versions of
the server’s dataset (as it develops during the execution of the protocol) are denoted by
their corresponding index (i.e., D0, D1, . . .). Recall that we consider data records such
that each data point is distinctly identifiable and unique (refer Section 3). Therefore,
entries in Di are tuples of the form (u, d) ∈ U × D̂u.

159

C Verifiable and Provably Secure Machine Unlearning

Users U {pub, D̂u ∼ D}u∈U Server S (pub)

if not VerifyInit(pub, com0, ρ0) : (stS,0,m0, com0, ρ0)← Init(pub)

abort D+
0 := ∅, U+

0 := ∅

D+
i := D+

i−1, U+
i := U+

i−1

add data points

k-th query D+
i := D+

i ∪ {(u, di,k)}

remove data points

j-th query U+
i := U+

i ∪ {(u, di,j)}

if not VerifyTraining(pub, comi−1, comi, ρi) (stS,i,mi, comi, ρi)← ProveTraining(stS,i−1, pub, D
+
i)

abort D+
i := ∅

if not VerifyUnlearning(pub, comi−1, comi, ρi) : (stS,i,mi, comi, ρi)← ProveUnlearning(stS,i−1, pub, U
+
i)

abort
for (u, di,j) ∈ U+

i :

if not VerifyNonMembership(pub, u, di,j, comi, πu,di,j) : πu,di,j ← ProveNonMembership(stS,i, pub, u, di,j)

abort U+
i := ∅

Initialize

i-th iteration

Proof of Training

OR Proof of Unlearning

com0, ρ0

u ∈ U , di,k ∈ D̂u

u ∈ U , di,j ∈ D̂u

train: comi, ρi

unlearn: comi, ρi

πu,di,j

Figure 1: Unlearning framework. We describe protocols in this framework based on an
admissible functions f . After initialization, execution proceeds in iterations. In the beginning
of each iteration i, users U can issue requests for data to be added or deleted. After this phase,
the server S either performs a proof of training by adding the requested data records in D+

i to
the model or a proof of unlearning by removing the requested data records in U+

i . It computes
a commitment comi on the updated model mi and updated training dataset. Furthermore,
the server computes a proof ρi that mi was obtained from this dataset. The users verify this
proof and the commitment. In each iteration of unlearning the server additionally creates
a proof of non-membership for every unlearnt data point conforming to a user that it has
complied with a data deletion request. This proof can be verified by the user against comi.

Admissible functions. We consider triples of functions f = (fI , fT , fU), where fI is
an initialization function, fT is a training function and fU is an associated unlearning
function. The set of all admissible functions is denoted by F . We let ppf denote public
hyperparameter which are used for initialization. W.l.o.g., we assume the functions to
be deterministic. A random seed may be contained in the hyperparameter and stored
in the state to derive randomness deterministically. More explicitly:

• (stf ,m) := fI(ppf): The initialization function fI takes as input hyperparameter
ppf and outputs the initial state stf and model m (e.g., its initial weights).

160

4 Our Framework

• (stf ,m) := fT (stf , D
+): The training function fT takes as input the current state

stf and a set D+ of data points to be added. It outputs the updated state and
new model m.

• (stf ,m) := fU(stf , U
+): The unlearning function fU takes as input the current

state stf and a set U+ of data points to be deleted. It outputs the updated state
and new model m.

These functions allow us to establish an abstraction to track the relation between
a model and its underlying dataset; we refer to this as the conceptual dataset. If D

is the current conceptual dataset, removing data points from U+ with fU updates the
dataset as D := D \U+. We assume that server and users agree on f before executing
the protocol (e.g., similar to the TLS handshake protocol).

4.1 Framework Overview

An overview of our framework is depicted in Figure 1. We denote a protocol in this
framework by Φf , where f = (fI , fT , fU) ∈ F is the triplet deployed by the protocol.
We then describe the execution of the protocol with two phases (executed in an iterative
manner):

P1. Data addition/deletion: Any user can issue an addition/ deletion request to
the server at any iteration. The server can batch multiple addition/deletion re-
quests within an iteration. For this, the server stores all requests in intermediate
datasets D+

i (addition) and U+
i (deletion), respectively.

P2. Proof of training (resp. unlearning): At the end of each iteration i, the
server updates its dataset by adding (resp. deleting) the data record stored in
D+

i (resp.U+
i). For training (resp. unlearning), the server needs to update the

model using function fT (resp. fU) on all records requested to be added (resp.
deleted). It then computes a proof of training (resp. unlearning) to be verified by
all users.

For unlearning, the server additionally needs to provide each user who requested a
point to be unlearnt with an individual proof that their data record was unlearnt
and removed from the server’s dataset (i.e., a proof of non-membership). After
an update was performed, the dataset D+

i (resp.U+
i) is reset to the empty set.

161

C Verifiable and Provably Secure Machine Unlearning

In the following, we describe the interfaces, including all algorithms, in more detail.
The completeness properties of these algorithms are formally presented in Section 4.2.

1. Setup and initialization. A global setup procedure Setup generates public pa-
rameters pub, i.e., pub ← Setup(1λ), where λ is the security parameter. We assume
that pub additionally includes the admissible functions f and the hyperparameter ppf .
This procedure can be executed either by the server or some external entity, depend-
ing on the application. pub is given to all actors. During initialization, the ML model
and a state (which captures information needed for subsequent iterations) between the
server and users are initialized using the Init and VerifyInit algorithms. Formally, the
algorithms are defined as follows:

Server: (stS,0,m0, com0, ρ0)← Init(pub)

Init takes as input the public parameters pub and outputs the initial state stS,0,
the model m0, the commitment com0, and the proof ρ0. The algorithm runs as fol-
lows: the server first suitably initializes model m0 using initialization algorithm fI

and additional hyperparameter ppf contained in pub. It stores the resulting state
stf in stS,0. The set of training records is initialized to be empty, i.e., D0 := ∅.
It then commits to m0 and D0 with com0 := (comm

0 ‖comD
0). We assume that the

commitment to the initial dataset (and all its updates) is computed deterministi-
cally from pub using a function Commit, i.e., comD

0 := Commit(pub, D0). Finally,
proof ρ0 attests the initialization of model m0.

User: 0/1← VerifyInit(pub, com0, ρ0)

VerifyInit takes as input the public parameters pub, a commitment com0, and a
proof ρ0. If the verification is successful, it outputs 1. On failure, it outputs 0.
All users verify (a) commitment com0 with D0 = ∅, and (b) model initialization
m0 against the proof ρ0.

2A. Proof of training. In each iteration i in which the server executes a proof of
training, it updates the model with any newly added data records using the training
function fT and proves that this was performed correctly. The users verify the resulting
proof. Formally, we define the two algorithms as follows:

162

4 Our Framework

Server: (stS,i,mi, comi, ρi)← ProveTraining(stS,i−1, pub, D
+
i)

ProveTraining takes as input the previous state stS,i−1, public parameters pub, the
set of new data records D+

i . It outputs the updated state stS,i, the model mi, the
commitment comi, and the proof ρi. The algorithm runs as follows: the server
computes an updated model mi obtained by executing training function fT on
state stf and D+

i . We define the resulting training set of mi as the union of the
previous dataset and all newly added data records, i.e., Di := Di−1 ∪ D+

i . The
server commits to both the model and training data with comi := (comm

i ‖com
D
i).

The server then computes the proof ρi that (a) model mi was updated by applying
fT , and (b) training data Di does not contain any unlearnt record, i.e., Di∩Ui =

∅, where Ui :=
⋃

k∈[i] U
+
k is the set of all unlearnt data records so far. The proof

also attests that (c) the set of unlearnt data records has not changed, i.e., Ui−1 =

Ui.

User: 0/1← VerifyTraining(pub, comi−1, comi, ρi)

VerifyTraining takes as input the public parameters pub, two commitments comi−1,
comi and a proof ρi. It outputs 1 if the verification is successful, and 0 otherwise.
All users validate properties (a)-(c) (as described above in ProveTraining) and
the update on commitment comi by verifying the proof ρi against the previous
commitment comi−1 and the new commitment comi.

2B. Proof of unlearning. In each iteration i in which the server performs a proof of
unlearning, it first updates the model using function fU and thus unlearning all data
records requested to be unlearnt. The server proves that this was performed correctly
and then computes a proof of non-membership for each individual user who requested
to delete their data point, proving that the corresponding records are absent in the
training data of the updated model. All users verify the correct update. Those users
who requested unlearning verify their proof of non-membership. Formally, we define
the following four algorithms:

Server: (stS,i,mi, comi, ρi)← ProveUnlearning(stS,i−1, pub, U
+
i)

ProveUnlearning takes as input the previous state stS,i−1, public parameters pub,
and the set U+

i which contains data records to be removed. It outputs the updated
state stS,i, the updated model mi, the commitment comi and the proof ρi. Here,

163

C Verifiable and Provably Secure Machine Unlearning

the server unlearns all records collected in U+
i and computes the updated mi by

executing function fU . Thus, conceptually, the new training set of mi is defined as
Di := Di−1 \U+

i . Similar to ProveTraining, the server commits to both the model
and training data with comi and computes the proof ρi that (a) model mi was
updated by applying fU , and (b) training data Di does not contain any unlearnt
records, i.e., Di∩Ui = ∅∗, where Ui := Ui−1∪U+

i .. The proof also attests that (c)
the previous set of unlearnt data records is a subset of the updated set Ui−1 ⊂ Ui.
This ensures that an unlearnt data record is never re-added into the training data.

User: 0/1← VerifyUnlearning(pub, comi−1, comi, ρi)

VerifyUnlearning takes as input the public parameters pub, two commitments
comi−1, comi and a proof ρi. It outputs 1 if the verification is successful, and 0 oth-
erwise. All users validate properties (a)-(c) (as described above in ProveUnlearning)
and the update on commitment comi by verifying the proof ρi against the previ-
ous commitment comi−1 and the new commitment comi.

Server: πu,di,j ← ProveNonMembership(stS,i, pub, u, di,j)

ProveNonMembership takes as input the current state stS,i, public parameters
pub and a data record (u, di,j). Then, for each record (u, di,j) ∈ U+

i , the server
computes a proof πu,di,j that this record is not part of the training set of model
mi, i.e., (u, di,j) /∈ Di.

User: 0/1← VerifyNonMembership(pub, u, di,j, comi, πu,di,j)

VerifyNonMembership takes as input the public parameters pub, the user identifier
u, their unlearnt data point di,j, the commitment of the iteration where di,j

was unlearnt and the proof of unlearning πu,di,j . It outputs the result of the
verification. The user verifies with both πu,di,j and comi that (u, di,j) was not
part of the training data Di of model mi.

Redundant computation. The framework ensures that deleted data records cannot
be re-added at a later point. Therefore, it suffices if “an honest majority” verifies the
updates. Even if a user does not participate in the protocol after verifying that their

∗ Note that, depending on the scenario, the equality check between a training and an unlearnt data
record can be replaced with a check on whether the records are “close enough” using some distance
metric.

164

4 Our Framework

data was deleted, verification of updates by an honest majority guarantees correct
server behavior.

This can be further optimized: if the users trust a third party (e.g., an auditor), then
the VerifyTraining and the VerifyUnlearning algorithm can be executed by this entity;
the output can be shared with all users (cf. Appendix 7.2 for further discussion).

4.2 Completeness

For completeness, we require that an honest execution of the protocol yields the ex-
pected outputs. In particular, if the server is honest, then the users successfully verify
the initialization of the model and the proofs for all updates—training and unlearning—
performed by the server. Further, a proof of non-membership that was generated for
an unlearnt data record is also successfully verified by the corresponding user. In the
following, we give a formal definition of computational completeness.

Definition 1 (Completeness). Let λ be the security parameter. A protocol Φf is com-
plete if for all pub← Setup(1λ), the following properties are satisfied:

1. Let (stS,0,m0, com0, ρ0)← Init(pub). Then

Pr[VerifyInit(pub, com0, ρ0) = 0] ≤ negl(λ) .

2. Let modei ∈ {train, unlearn} indicate whether proof of training or proof of un-
learning has been performed in iteration i. Let A be a PPT adversary that out-
puts a valid sequence of datasets either to be added {train: D+

i } or to be deleted
{unlearn: U+

i } for all i ∈ [ℓ].

For all i ∈ [ℓ], if modei = train, let (stS,i,mi, comi, ρi) ← ProveTraining(stS,i−1,

pub, D+
i) and if modei = unlearn, let (stS,i,mi, comi, ρi)← ProveUnlearning(stS,i−1,

pub, U+
i).

Then for all modei = train:

Pr[VerifyTraining(pub, comi−1, comi, ρi) = 0] ≤ negl(λ) ,

and for all modei = unlearn:

Pr[VerifyUnlearning(pub, comi−1, comi, ρi) = 0] ≤ negl(λ) ,

where validity is defined via the following conditions: ∀i, j s. t. i 6= j : D+
i ∩D+

j = ∅
and ∀i, j s. t. j < i : D+

i ∩ U+
j = ∅.

165

C Verifiable and Provably Secure Machine Unlearning

GameUnlearnA,E,Φf ,D(1
λ)

00 pub← Setup(1λ)

01 (k, (u, d), πu,d , {modei: comi, ρi}i∈[0:ℓ]; {Di}i∈[0:ℓ])← (A‖E)(pub, aux)

02 # Pre-processing
03 U+

k := Dk−1 \Dk

04 Parse comi as (comm
i ‖com

D
i) ∀i ∈ [0 : ℓ]

05 # Evaluate winning condition
06 if Commit(pub, Di) = comD

i ∀i ∈ [0 : ℓ] # Datasets
07 and VerifyInit(pub, com0, ρ0) # Initialization
08 and VerifyTraining(pub, comi−1, comi, ρi) ∀i : modei = train # Training
09 and VerifyUnlearning(pub, comi−1, comi, ρi) ∀i : modei = unlearn # Unlearning
10 and VerifyNonMembership(pub, u, d, comk, πu,d) # Non-Membership
11 and k < ℓ and (u, d) ∈ U+

k and (u, d) ∈ Dℓ : # Point unlearnt & re-added
12 return 1

13 return 0

Figure 2: Security game. We define the security of an unlearning protocol Φf in terms
of game GameUnlearn. The notation (A‖E) denotes that both algorithms are run on the
same input and random coins and assigning their results to variables before resp. after the
semicolon. Input aux refers to auxiliary input.

3. For all i ∈ [ℓ] s. t. modei = unlearn: for all (u, d) ∈ U+
i , let πu,d ← ProveNonMembership

(stS,i, pub, u, d), then

Pr[VerifyNonMembership(pub, u, d, comi, πu,d) = 0] ≤ negl(λ) .

We require computational completeness here to allow for a wide range of instantia-
tions. For example, an instantiation that works on hash values of data records cannot
achieve perfect completeness because of hash collisions. By allowing for computational
completeness, however, we only require that it should be hard for a PPT adversary to
find such collisions (i.e., with a negligible probability).

4.3 Security Definition

In this section, we present the security definition for unlearning in a game GameUnlearn.
The adversary, described by a probabilistic algorithm A, takes the role of the server.
Intuitively, the definition captures that a malicious server cannot add (and train on)

166

4 Our Framework

a data point that a user requested to delete in a previous iteration. However, we go a
step further and let the server choose which data records it will add or delete. Thus,
the goal of the adversary is to find a data record for which it can prove deletion, but
which is re-added in some subsequent iteration.

In order to capture this setting, we propose an extractability-based security definition
as used in the context of hash functions or SNARKs [29, 30, 31]. That is, we require the
existence of an extractor, modelling that the adversary cannot forge a transcript with-
out knowing the underlying datasets. Thus, the adversary in our game has to provide
the protocol outputs (i.e., the commitments and proofs), whereas the extractor outputs
the corresponding inputs that the adversary used (i.e., the underlying datasets). We
give a formal description of game GameUnlearn in Figure 2, which is divided into the
following two stages:

S1. Simulation. The game draws the public parameters pub using Setup and runs the
adversary A on input pub. The extractor E is run on the same input and random
coins. Additionally, we provide benign auxiliary input aux, which captures any
extra information that the adversary may have (possibly obtained prior to the
start of executing the current protocol). At some point, A will terminate and
output a sequence of tuples (k, (u, d), πu,d , {modei: comi, ρi}i∈[0,ℓ]) for some ℓ ∈
N, where (u, d) is a data record that was proved to be deleted in the k-th iteration,
and modei ∈ {train, unlearn}. At the same time, the extractor outputs a sequence
of datasets (D0, . . . , Dℓ).

S2. Finalize. After the adversary has terminated, the game uses the extractor’s
output to compute the set of data points unlearnt in the k-th iteration based on
the datasets Dk and Dk−1. Recall that the commitment in the framework consists
of two parts comm

i and comD
i , where we need the second part for verification. The

game checks for the following conditions: (a) comD
i was obtained from Di, (b) the

initial proof ρ0 verifies for the initial commitment com0, (c) each proof of training
ρi verifies for commitments comi−1 and comi, (d) each proof of unlearning ρi

verifies for commitments comi−1 and comi, (e) the proof of non-membership πu,d

verifies for (u, d) and comk, (f) k < ℓ and (u, d) was unlearnt in iteration k and
re-added in iteration ℓ. If all these properties are satisfied, then the game outputs
1 and A wins.

We summarize this in the following definition.

167

C Verifiable and Provably Secure Machine Unlearning

Definition 2 (Unlearning). Let λ be the security parameter and consider game GameUnlearn

in Figure 2. Protocol Φf for data distribution D is unlearning-secure if for all PPT ad-
versaries A there exists an extractor E such that for all benign auxiliary inputs aux :

Pr[GameUnlearnA,E,Φf ,D(1
λ)⇒ 1] ≤ negl(λ) .

5 Instantiation

Our framework defines a general interface to construct protocols for verifiable unlearn-
ing. In the following, we present such a protocol based on cryptographic building blocks.
We use SNARKs and hash functions where the execution of the admissible functions
is proved inside the SNARK and data records are stored in hashed form. By using
SNARKs, we can keep the instantiation generic and universally prove its completeness
and security for any triplet (fI , fT , fU). A detailed description of the protocol is in
Figure 4 in Appendix A.

Data representation. We internally split the data into training data D and unlearnt
data U. Therefore, the server stores two ordered sets HD and HU of hashed training
data records and unlearnt data records. From both sets, we additionally compute a
hash value in form of a hash chain. This allows for efficient caching of intermediate
hashes and, for HU , enables us to easily prove that entries are only appended to the
chain as well as fast membership verification for unlearnt data points. To account
for the partition of training and unlearnt data and the admissible function used, we
instantiate the commitment com as a tuple of four elements: (a) hash of the state hstf

(defined by admissible function f), (b) hash of the model hm , (c) hash of the training
data hD , and (d) hash of the unlearnt data hU . A formal description of how exactly
the hash values are computed is given in Appendix A.

Proof system. In order to prove the correct execution of fI , fT , and fU , we use
proof systems and more specifically SNARKs. To this end, we define the verification
of the initialization, training updates and unlearning updates in terms of a polynomial
decidable binary relation RI , RT and RU (respectively) over circuits CI , CT and CU

(respectively). These circuits are outlined in Figure 3 and described further below.

168

5 Instantiation

CI(public hstf,0 , hm0 , hD0 , hU0 , private stf,0,m0)
00 # Check input for initialization
01 if hstf,0 6= HashState(stf,0) or

hm0 6= HashModel(m0) or
hD0 6= HashData(∅) or
hU0 6= HashData(∅) :

02 return false

03 return true

CT (public hstf,i , hstf,i−1
, hmi , hDi , hDi−1 , hUi , hUi−1 , private stf,i−1,HUi−1 , D

+
i)

04 # Check input set of hashed unlearnt data records
05 if hUi−1 6= HashData(HUi−1) :

06 return false

07 # Update and check set of hashed training data records and unlearnt data records
08 HD+

i
:= {HashDataRecord(u, d)}(u,d)∈D+

i

09 if hDi 6= AppendHashData(hDi−1 ,HD+
i
) or hUi 6= hUi−1 or HUi−1 ∩HD+

i
6= ∅ :

10 return false

11 # Check input state, perform training and check outputs
12 if hstf,i−1

6= HashState(stf,i−1) :

13 return false
14 (stf,i,mi) := fT (stf,i−1, D

+
i)

15 if hstf,i 6= HashState(stf,i) or hmi 6= HashModel(mi) :

16 return false

17 return true

CU (public hstf,i , hstf,i−1
, hmi , hDi , hDi−1 , hUi , hUi−1 , private stf,i−1,HDi−1 , U

+
i)

18 # Check input set of hashed training data records
19 if hDi−1 6= HashData(HDi−1) :

20 return false

21 # Update and check set of hashed unlearnt data records and training data records
22 HU+

i
:= {HashDataRecord(u, d)}(u,d)∈U+

i

23 HDi
:= HDi−1 \ HU+

i

24 if hUi 6= AppendHashData(hUi−1 ,HU+
i
) or hDi 6= HashData(HDi) :

25 return false

26 # Check input state, perform unlearning and check outputs
27 hstf,i−1

6= HashState(stf,i−1) :

28 return false
29 (stf,i,mi) := fU (stf,i−1, U

+
i)

30 if hstf,i 6= HashState(stf,i) or hmi 6= HashModel(mi) :

31 return false

32 return true

Figure 3: Circuits CI , CT and CU . Based on this circuits, we prove correct execution of
admissible functions for initialization, proof of training and proof of unlearning. The hash
algorithms are further specified in Appendix A.

169

C Verifiable and Provably Secure Machine Unlearning

1. Initialization. During the protocol’s initialization, function fI is run to obtain the
initial state stf,0 and initial model m0. Also, the sets of hashed training data and un-
learnt data records are initialized, i.e.,HD0 = ∅ andHU0 = ∅. The commitment consists
of hashes to these four values, i.e., com0 = (hstf,0 , hm0 , hD0 , hU0). Correct initialization
is proved using the SNARK for relation RI captured by circuit CI (cf. Figure 3). The
proof of training ρ0 consists of the statement ϕ0 and resulting SNARK proof π0, which
can be verified by the user using com0.

2A. Proof of training. The server starts by executing ProveTraining. In the i-th
iteration, it first performs the model update by running function fT on the previous
state stf,i−1 and new data records D+

i , the result being an updated state stf,i and a
new model mi. Then the server updates the set of hashed training data records HDi

with D+
i and computes the new commitment comi = (hstf,i , hmi

, hDi
, hUi−1

), where the
commitment to the unlearnt data records is the same as in the previous iteration since
no data was deleted.

The proof ρi is computed using the SNARK for relation RT captured by circuit CT

(cf. Figure 3). The corresponding statement ϕi and proof πi attest that (a) the model
and state were updated correctly with D+

i , (b) the set of hashed unlearnt data was
not changed, and (c) no data record that was previously unlearnt is added. The server
sends (ρi, comi) to the users. Subsequently, the users execute VerifyTraining and verify
ρi using comi and the previous commitment comi−1.

2B. Proof of unlearning. The proof of unlearning consists of two parts: the model
update for deleting data records and the proof of non-membership. The server first
runs ProveUnlearning which is similar to ProveTraining. In the i-th iteration, it performs
the model update by running function fU on the previous state stf,i−1 and the set U+

i

of data records to be deleted. The result is the updated state stf,i and model mi. The
set HUi

is computed by appending hashed records of U+
i to HUi−1

. At the same time,
HDi

is computed from HDi−1
by removing those entries. The commitment comi consists

of the hash values (hstf,i , hmi
, hDi

, hUi
). The whole procedure is proved using circuit CU

(cf. Figure 3) for relation RU , producing a SNARK proof πi for the corresponding
statement ϕi, which can be verified by the user using comi and comi−1.

The second part of the proof of unlearning is to provide a proof on non-membership
to all users that requested their data record (u, d) ∈ U+

i to be deleted. We prove this by

170

5 Instantiation

proving its membership in HUi
. If HUi

∩HDi
= ∅, it follows that (u, d) /∈ Di (which we

show to hold when proving completeness). Specifically, we use the hash chain for HUi
:

for a given data record, we compute a membership proof as a path in this chain; this
path can be verified by recomputing the hash chain and comparing the final result with
the hash in the commitment (i.e., hash value hUi

).
Thus, in our protocol, the server performs ProveNonMembership by computing the

chain path to a data record (u, d) ∈ U+
i using the procedure ComputeChainPath (cf. Ap-

pendix A). It outputs this as the proof πu,d which is then sent to the user. The user
uses the hash hUi

from the commitment to verify membership with VerifyChainPath. If
the path leads to that hash, the user will accept, and will abort otherwise.

5.1 Completeness and Security

We first show that our instantiation is complete according to Definition 1.

Theorem 1. Let Π be a complete SNARK and Hash a collision-resistant hash function.
Then the instantiated protocol in Figure 4 satisfies completeness.

We give a proof sketch; refer to Appendix B for the full proof.

Proof (Sketch). Completeness of the initialization (first property) is easy to observe
since the two hashed datasets are initialized as empty and the execution of function fI

is proven with the SNARK for relation RI . By completeness of the SNARK, the users
can successfully verify the proof, additionally using the commitments to state, model
and datasets. The second property follows from the completeness of the SNARKs for
relations RT and RU and collision-resistance of the hash function. However, note that
if a hash collision occurs, it is not possible to provide the proof of training. Thus,
only computational completeness can be achieved. Given that the proofs of training
and unlearning are successful, completeness of the proof of non-membership (third
property) follows from the construction and correctness of the hash chain.

Now we want to prove that our instantiation is a secure unlearning protocol according
to Definition 2.

Theorem 2. Let Hash be a collision-resistant hash function and Π be a secure SNARK.
Then the instantiated protocol in Figure 4 satisfies unlearning security.

171

C Verifiable and Provably Secure Machine Unlearning

We give a proof sketch; refer to Appendix C for the full proof.

Proof (Sketch). Let A be an adversary in the unlearning security game (cf. Figure 2).
By knowledge soundness of the SNARK, there exists an extractor which outputs the
witness and thus the datasets Di corresponding to the outputs of the adversary. We
then use the soundness of the SNARK. That is, A must have computed the proof using
a witness, i.e., the state stf,i and the dataset D+

i (in the proof of training) or dataset U+
i

(in the proof of unlearning), which also determine the model mi and must correspond
to the hash values in the commitment. By collision-resistance of the hash function, the
adversary cannot find another state, model or dataset for the same commitment. Thus,
applying function fT (or fU) to the previous state and datasets results in same state
and model as used by A.

Since all proofs as well as the proof of non-membership of data record (u, d) must
verify successfully, the hash of (u, d) must be contained in the setHUk

which was used to
create the proof. Here, k is the iteration where (u, d) was unlearnt; the observation holds
by assuming soundness of the SNARK and collision-resistance of the hash function. We
can further infer that (u, d) must also be part of future sets HUi

, k < i ≤ ℓ and by
collision-resistance (u, d) must also be part of the underlying datasets Ui. Finally, we
use the fact that the proof attests that the intersection of HUℓ

and HDℓ
is empty.

This yields a contradiction and shows that (u, d) cannot be present in the last dataset
Dℓ.

6 Experimental Evaluation

In this section, we evaluate the performance of our instantiated protocol. First, we im-
plement and compare the protocol’s main building blocks for three types of unlearning
approaches captured by admissible functions. The techniques from machine unlearn-
ing literature we consider are retraining-based unlearning, amnesiac unlearning and
optimization-based unlearning (cf. Section 2.1). Second, we study the applicability to
different ML models and datasets.

The goal of our experiments is to evaluate the feasibility of verifiable machine un-
learning and understand how different unlearning techniques influence the proof cre-
ation and verification times. Our salient findings include:

172

6 Experimental Evaluation

1. The majority of the costs stem from the cost of performing verifiable training,
which is at most 5×more expensive than verifiable unlearning. In scenarios where
one trusts the training process, this results in immediate savings. Note that we
did not aim to optimize the verifiable computation component; this is orthogonal
to the problem considered in this paper. We provide suggestions on how to achieve
better performance in Section 7.1.

2. Unlearning techniques that rely on simple mechanisms such as adding/subtracting
information from model parameters (e.g., amnesiac unlearning) are intuitively
cheaper to prove (in comparison to retraining-based approaches). However, hid-
den costs emerge in having to verify the integrity of the inputs needed for such
methods.

All experiments are performed on a server running Ubuntu 22.04 with 256 GB RAM
and two Intel Xeon Gold 5320 CPUs. Our code is available at github.com/cleverhans-
lab/verifiable-unlearning.

6.1 Cryptographic Primitives

Proof system. Our instantiation is generic and can be implemented with any secure
SNARK (cf. Section 2.2) i.e., the SNARK needs to satisfy completeness, soundness,
and knowledge soundness. In this work, we use Spartan [21] as it is efficient and, more
importantly, transparent, i.e., it does not require a trusted setup. Spartan comes in
two variants, as a succinct non-interactive zero-knowledge (NIZK) proof system and
as a SNARK. Similar to the work of Angel et al. [32], we use the NIZK variant,
where verification time is linear in the size of the R1CS instance (see below). By using
the SNARK variant, some verification cost can be offset to the server and a one-time
pre-processing step for the user.

Depending on the application it might also be sensible to use a different proof system.
One alternative would be Groth16 [31], which, for example, requires a trusted setup,
but has the advantage of constant verification time and proof size.

Spartan is implemented on the ristretto255 elliptic curve, a prime-order group
abstraction atop curve25519. Following prior work on verifiable computation [32, 33,
10], we convert the computation of our circuits into Rank-1 Constraint Systems (R1CS)
instances; i.e., the statements in RI , RT and RU (cf. Figure 3) are represented as a

173

https://github.com/cleverhans-lab/verifiable-unlearning
https://github.com/cleverhans-lab/verifiable-unlearning

C Verifiable and Provably Secure Machine Unlearning

constraint system over a finite field. More specifically, an R1CS instance is described
by a tuple (F, A,B,C, io,m), where F is the finite field, A,B,C ∈ Fm×m are matrices
of size m ≥ |io| + 1 and io is the public input and output of the instance. R1CS is a
generalization of arithmetic circuit satisfiability. We say an R1CS instance is satisfiable
if there exists a witness w ∈ Fm−|io|−1 such that (A·z)◦(B ·z) = (C ·z) for z = (io, 1, w),
where · is the matrix-vector product and ◦ the the Hadamard product. Since A,B,C are
generally sparse matrices, a parameter n is sometimes specified, denoting the maximum
number of non-zero entries in each matrix.

We describe our circuits using the ZoKrates programming language [34] and use the
CirC compiler infrastructure [35] to facilitate the conversion to R1CS. The compiler
ensures that the computation graph does not have loops, and a “flat” computation is
performed. To represent data and other parameters in a finite field, we convert them
into fixed precision real numbers.

We only require collision-resistance for the hash function. It is beneficial to use an
algebraic hash function where most operations can be directly done in the finite field.
Bit-wise hash functions such as the SHA family of hash functions are much slower in
that regard. We use Poseidon [36] as it is particularly designed for zero-knowledge
proof systems. To be used with Spartan, we implement a version of Poseidon for the
ristretto255 curve. Similar to the proof system, our instantiation is generic and can
work with any hash function. Other good options are Pedersen Hash [37, p.76] or
MIMC [38].

6.2 Protocol Instantiation

We implement the high-level functions of the instantiated protocol (from Section 5)
for retraining-based unlearning, amnesiac unlearning [14], and optimization-based un-
learning [22, 23] as introduced in Section 2.1. We consider the subtasks of proof of
training, proof of unlearning, and proof of non-membership.

We start our evaluation by comparing and understanding the overheads of each
subtask between the techniques. To this end, we consider a linear regression model
and train this model for 3 epochs with SGD as a general purpose approach. We use a
synthetic dataset D and set the batch size to 1. First, we compute a proof of training
with the addition of 100 data points with 10 features each. We set |D0| = 0, |D+

1 | =

174

6 Experimental Evaluation

Table 1: Run-time of protocol functions. We compare the running time between
the protocols subtasks. We consider retraining-based unlearning, amnesiac unlearning, and
optimization-based unlearning. We report the relative difference with retraining in gray.

Retraining Amnesiac Optimization

Proof of Training
R1CS 8,056,887 ×1.00 8,130,535 ×1.01 7,980,878 ×0.99
Π.Prove w/ RT 4m 32s ×1.00 4m 32s ×1.00 4m 31s ×0.99
Π.Vrfy w/ RT 1m 36s ×1.00 1m 37s ×1.01 1m 35s ×0.99

Proof of Unlearning
R1CS 8,102,288 ×1.00 616,005 ×0.08 919,456 ×0.11
Π.Prove w/ RU 4m 58s ×1.00 2m 18s ×0.46 0m 53s ×0.18
Π.Vrfy w/ RU 1m 48s ×1.00 0m 49s ×0.45 0m 20s ×0.19

Proof of Non-Membership
ComputeChainPath < 1s ×1.00 < 1s ×1.00 < 1s ×1.00
VerifyChainPath < 1s ×1.00 < 1s ×1.00 < 1s ×1.00

R1CS: #constraints

100, and |U0| = 0 accordingly. Subsequently, we compute the proof of unlearning and
simulate the deletion of 10 data points and set |D1| = 100, |U1| = 0, and |U+

2 | = 10.
For optimization-based unlearning, we unlearn for 3 epochs.

The results from these experiments are presented in Table 1. Across all techniques,
compilation time of R1CS instances ranges between 17s (CU for optimization-based
unlearning) and 48m 45s (CU for retraining-based unlearning).

Proof of training. We observe that the complexity of the training is compara-
ble between unlearning approaches. The underlying R1CS instances have between
7, 980, 878—8, 130, 535 constraints and proving time varies insignificantly between 4m 31s—
4m 32s. Recall that in amnesiac unlearning, we also need to collect model updates that
are later used for unlearning, which introduces negligible overhead compared to the
training costs itself.

Proof of unlearning. Runtime of generating and verifying the proof of unlearning
shows more variance. Amnesiac unlearning is over 2× faster and optimization-based

175

C Verifiable and Provably Secure Machine Unlearning

Table 2: Proving time vs. model capacity. We compare the proving time of proof of
training for different classes of models with increasing capacity.

Classifier R1CS Π.Prove Π.Vrfy

Linear Regression 8,056,887 4m 33s 1m 36s
Logistic Regression 9,048,909 5m 8s 1m 45s
Neural Network (N = 2) 21,867,010 9m 50s 3m 34s
Neural Network (N = 4) 42,030,731 24m 16s 6m 42s

R1CS: #constraints

unlearning over 5× faster than retraining-based unlearning. This is despite the R1CS
instance of optimization-based unlearning being almost 50% larger compared to the
amnesiac instance (919,456 vs. 616,005 constraints) but it is still more efficient to
compute as it is 63% more sparse (i.e., 7,660,455 vs. 12,248,390 entries are non-zero).
The main difference is that amnesiac unlearning requires to maintain and verify a state
from training (i.e., the model updates) while optimization-based unlearning does not
require a state.

Proof system. In general, we observe that verification is 2×-3× faster than proof
generation. This is dependent on the choice of the proof system. For example, by using
the SNARK variant of Spartan, we can offload some of the verification costs to the
server and an additional pre-processing for the user. In this case, proving time increases
to 33m 39s—34m 12s for the proof of training across all techniques and verification
time reduces to <1s, but the user needs to run a one-time pre-processing step which
takes between 8m 6s—8m 12s.

Proof of non-membership. Finally, proof of non-membership is very efficient. The
implementation is independent of the unlearning scheme used and both proving and
verification requires < 1s.

6.3 Circuit Complexity

The dominant component of the protocols’ run-time is the complexity of the circuit
used to generate proofs of training and unlearning. This complexity depends mainly on

176

6 Experimental Evaluation

Table 3: Scalability to benchmark datasets. We compute the proof of training for dif-
ferent datasets from the PMLB benchmark suite [24].

Dataset Size R1CS Π.Prove Π.Vrfy

Creditscore 100 6 3,986,308 2m 22s 0m 47s
Patient 88 8 4,579,718 2m 28s 0m 53s
Cy Young 92 10 5,903,988 3m 16s 1m 9s
Corral 160 6 6,347,236 3m 43s 1m 15s
Lawsuit 264 4 7,190,981 4m 7s 1m 27s
Breast cancer 286 9 16,514,048 9m 25s 3m 18s
Monk3 554 6 21,841,281 13m 36s 4m 32s

Size: #data points × #features
R1CS: #constraints

(a) the unlearning technique, (b) the complexity of the model, and (c) the size of the
dataset. In the following, we first consider model complexity and study different classes
of models. Next, we look on the complexity of the dataset. In both cases, we focus on
retraining-based unlearning as the baseline from Table 1 and, more specifically, on the
training circuit CT .

To understand the effects of the choice of ML model, we follow related work [39],
and consider linear regression, logistic regression and neural networks for classification.
For the neural networks, we focus on models with one hidden layer and varying num-
bers of (hidden) neurons N ∈ {2, 4}. For activation, we use the sigmoid function and
approximate it with a third-order polynomial as done in [40, 41]. Again, we train each
model with SGD for 3 epochs on a synthetic dataset consisting of 100 training points
with 10 features each.

The results are summarized in Table 2. We observe that the circuit size increases
together with the complexity of the model. For instance, the number of R1CS con-
straints increases by 1.12× to 9, 048, 909 constraints when going from linear to logistic
regression. This is intuitive: in logistic regression, we additionally need to evaluate the
sigmoid activation which induces this overhead. In a similar vein, moving from logistic
regression to neural networks increases the circuit further to 21, 867, 010 (N = 2) and
42, 030, 731 (N = 4) constraints respectively.

177

C Verifiable and Provably Secure Machine Unlearning

Benchmark datasets. To understand the impact of the dataset and the practical
applicability of the protocol, we now turn to benchmark datasets. We choose several
datasets from the PMLB benchmark suite [24] (as considered in related work [32] on
verifiable computation of numerical optimization problems) and train a linear regression
model for all datasets. To make results comparable, we train all models for 3 epochs
with a learning rate of 0.1. As commonly done, we split the data into 80:20 train test
split. Models achieve a test accuracy between 73 % and 92 %.

Results are presented in Table 3. For all models, we observe a linear dependence
between run-time and dataset size. Generating a proof for the smallest dataset with
600 total features (i.e., total points × features) requires 2m 22s and for the largest
dataset with 3,324 total features requires 13m 36s.

7 Discussion

In this section, we discuss potential improvements to our work.

7.1 Scalability

Our experiments with the instantiated system show that the run-time of the protocol
is dominated by generating and verifying the proof of training and unlearning. We
base our construction on Verified Computation (VC) and, consequently, inherit its
limitations, e.g., in terms of scalability. This can also be observed for other VC-based
approaches in the ML setting [42, 43, 40, 41]. Any future advances in VC will lead to
run-time improvements for our approach. Nevertheless, we discuss how one can improve
performance with the primitives available today.

SNARK-friendly techniques. It is known that certain computations are more
amendable to efficient SNARK verification than others. A classic example of this is
the development of SNARK-friendly hash functions [36, 38, 37]. Similarly, there exist
ML paradigms that are also more amenable to verification. For example, inference us-
ing quantized models [44, 45] or lookup tables for expensive computations [44] reduce
costs. Furthermore, when there exists a unique ML model (i.e., a global optimum for
the underlying optimization problem), proving and verification complexity can be im-
proved even further [32]. In our experiments, we observed that online computation of
model updates in optimization-based unlearning is faster than verifying model updates

178

7 Discussion

in amnesiac unlearning as the verification of input values involves expensive calcula-
tion of hash values. We envision future work to focus on developing SNARK-friendly
unlearning techniques combining above observations.

Offloading computation. Orthogonal to the employed unlearning technique and
ML model, one can offload expensive proof generation steps to the user (e.g., the
evaluation of a non-linear activation function). We can split the proving and verification
processes such that the server creates a proof for certain types of computations and
shares partial results with the (honest) user who performs (and thus verifies) expensive
computations themselves.

Application-specific relaxations. Finally, depending on the application, it might
be possible to avoid the expensive generation of the proof of training. Consider, for
instance, an application where data is collected only once and data will only be removed
at a later point in time (e.g., biomedical user studies or other human-involved data
collection processes). In this case, proof of training only needs to be performed once
and—if users further trust the initial training phase—it might be sufficient to only
prove unlearning.

7.2 Alternative Instantiations

External trust. Our instantiation in Section 5 avoids having a trusted third party
and instead relies only on cryptographic protocols to guarantee security. For efficiency
purposes and to remove the burden from the user, one can introduce a trusted auditor
who verifies on behalf of a user (as we discuss towards the end of Section 4.1). This
can be achieved by either having a dedicated trusted third party (e.g., one that does
not have a motivation to collude with the server such as another cloud provider), or
distributed auditors where trust is established from multiple independent verifications.

Trusted hardware. If TEEs (e.g., Intel SGX [46]) are available, then one can run
training and unlearning procedures within it and return a digest signed by a TEE
provider to the user. When using a TEE, one needs to consider common concerns
such as trusting a hardware vendor, availability of said vendor for signing the digest,
limited memory [47], their applicability to ML-related tasks that involve GPU com-

179

C Verifiable and Provably Secure Machine Unlearning

putation [48], and side-channels [49, 50]. Some of these issues were addressed in the
independent and concurrent work of Weng et al. [51] (cf. Section 8).

Minimizing redundancy. In our instantiation, a user who has requested unlearning
is required to verify future updates to ensure that their data point has not been re-
added. If we combine VC with an additional proof of secure data erasure, we can give
similar guarantees while not requiring the user to verify all updates. However, secure
erasure is a non-trivial problem in itself and was considered in e.g., [52]. Formalizing
deletion compliance from a server’s perspective [53] can also be seen as complementary
problem.

7.3 Privacy

Formalizing privacy for unlearning protocols is an interesting direction for future work
and requires to establish an additional security definition. Although it is out-of-scope
for our work, we want to highlight that our instantiation does not require the users to
know the datasets or model. In fact, they only see hash commitments and the SNARK
proofs. If the hash function satisfies pseudo-randomness or is modeled as a random
oracle, then hash values do not leak any information about the underlying data points
as long as the input space is large enough. Additionally, if the SNARK satisfies the
zero-knowledge property [54] (which most SNARKs including Spartan do), then the
proof also does not leak information about the witness. However, we require users
to know whether training or unlearning happened because they need to know which
verification procedure to run. Privacy in the context of model inference has been studied
more extensively, e.g., Gao et al. [55] define security notions for deletion hiding and
reconstruction. An overview for different formalizations of inference privacy is also
given in [56].

8 Related Work

Our approach for verifiable machine unlearning naturally touches different areas of
security and ML research. In the following, we examine related concepts and methods.

180

8 Related Work

Verifying unlearning. Prior work [57, 58] aims at verifying unlearning by embed-
ding backdoors [59] in models (using data whose unlearning is to be verified) and
verifying backdoor removal on unlearning. However, such approaches are probabilistic
with no theoretical guarantees of when they work, unlike our cryptography-informed
approach which produces verifiable proofs.

The work of Guo et al. [12] provides end-users with a certificate that the new model
is influenced by the specific data in a quantifiably low manner. While this certificate
conceptually bounds the influence of a data point from an algorithmic perspective,
it provides no guarantee that the entity executing the algorithm (i.e., server) did so
correctly. In our work, we aim to capture exactly this and provide cryptographic guar-
antees of correctness of execution.

Concurrently to our work, Weng et al. [51] propose an unlearning framework based on
TEE. They model unlearning in two phases: a setup phase, where the user sends data
which is used to train an ML model, and a deletion phase, where a new model is trained
without the data point that the user requests to delete. Their protocol uses unlearning
based on SISA [11] and can be captured by our framework as well. In contrast to our
instantiation that is based only on cryptographic primitives, their approach relies on
trusted hardware (i.e., the correctness and integrity of the SGX enclave) as well as
cryptographic assumptions (i.e., EUF-CMA security of the signature scheme used by
the enclave and collision-resistance of the hash function).

Proving model inference. There exist various approaches to proving inference us-
ing SNARKs [60, 61, 62, 45, 44] which complements our protocol in that regard. An-
other approach would be to use trusted execution environments to do so as suggested
in [51].

Verifiable computation. We use verifiable computation for proof of training and
proof of unlearning. There has been a series of works demonstrating a remarkable
progress in making these schemes (and those related to verification of data used for
computation) practical [21, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 30].
To verify the computation of training an ML model, Zhao et al. [39] also propose
verification using a SNARK. However, their primary objective is to design a scheme
to ensure that the payments made to servers are correct. In our work, however, we
aim to design a scheme to verify the correctness of data deletion when training ML

181

C Verifiable and Provably Secure Machine Unlearning

models. Otti [32] is a compiler that is aimed at designing efficient arithmetic circuits for
problems that involve optimization (such as those commonly found in ML). DIZK [10]
is a distributed system capable of distributing the compute required for proof creation.

9 Conclusion

The problem of unlearning has gained significant interest in terms of definitions and
algorithms for updating model parameters. However, regardless of the definition or the
algorithm the server uses to update the model, the user has no way to verify that the
server indeed executed the unlearning procedure. In this paper, we define unlearning
as a security problem and propose a framework to capture the guarantees verifiable
unlearning needs to provide. We propose the first verifiable unlearning procedure based
on cryptographic primitives instantiated using SNARKs and hash chains. Our imple-
mentation shows the feasibility of our approach on several benchmark datasets and
machine learning models. Future work includes determining which unlearning tech-
niques are most suitable for efficient verifiable computation, while at the same time
devising methods specifically for verifying machine learning code.

Acknowledgements

Thorsten Eisenhofer and Doreen Riepel were funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy
- EXC 2092 CASA - 390781972. Nicolas Papernot would like to acknowledge his spon-
sors, who support his research with financial and in-kind contributions, including Apple,
CIFAR through the Canada CIFAR AI Chair program, DARPA through the GARD
program, Intel, NSERC through the Discovery grant, Meta, and Ontario through the
Early Researcher Award program. Resources used in preparing this research were pro-
vided, in part, by the Province of Ontario, the Government of Canada through CIFAR,
and companies sponsoring the Vector Institute. We would like to thank members of
the CleverHans Lab for their feedback. We would also like to thank Sebastian Angel,
Jess Woods, and Eleftherios Ioannidis for input related to the SNARK compilers.

182

9 Conclusion

References

[1] General Data Protection Regulation (GDPR). Official Legal Text, 2016.

[2] California Consumer Privacy Act (CCPA). Official Legal Text, 2018.

[3] Personal Information Protection and Electronic Documents Act (PIPEDA). Offi-
cial Legal Text, 2019.

[4] Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influ-
ence Functions. In International Conference on Machine Learning (ICML).

[5] Vitaly Feldman. Does Learning Require Memorization? A Short Tale About a
Long Tail. In ACM SIGACT Symposium on Theory of Computing (STOC), 2020.

[6] Gavin Brown, Mark Bun, Vitaly Feldman, Adam D. Smith, and Kunal Talwar.
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy
Learning? In ACM SIGACT Symposium on Theory of Computing (STOC), 2021.

[7] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The
Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Net-
works. In USENIX Security Symposium, 2019.

[8] Klas Leino and Matt Fredrikson. Stolen Memories: Leveraging Model Memo-
rization for Calibrated White-Box Membership Inference. In USENIX Security
Symposium, 2020.

[9] Yinzhi Cao and Junfeng Yang. Towards Making Systems Forget with Machine
Unlearning. In IEEE Symposium on Security and Privacy (S&P), 2015.

[10] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Sto-
ica. DIZK: A Distributed Zero Knowledge Proof System. In USENIX Security
Symposium, 2018.

[11] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine
Unlearning. In IEEE Symposium on Security and Privacy (S&P), 2021.

[12] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Cer-
tified Data Removal from Machine Learning Models. In International Conference
on Machine Learning (ICML), 2020.

183

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://laws-lois.justice.gc.ca/PDF/P-8.6.pdf
https://laws-lois.justice.gc.ca/PDF/P-8.6.pdf

C Verifiable and Provably Secure Machine Unlearning

[13] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal Sunshine of
the Spotless Net: Selective Forgetting in Deep Networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[14] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac Machine Learning.
In AAAI Conference on Artificial Intelligence (AAAI), 2021.

[15] Thomas Baumhauer, Pascal Schöttle, and Matthias Zeppelzauer. Machine Un-
learning: Linear Filtration for Logit-based Classifiers. Machine Learning, 2022.

[16] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh.
Remember What You Want to Forget: Algorithms for Machine Unlearning. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[17] Ozan Sener and Silvio Savarese. Active Learning for Convolutional Neural Net-
works: A Core-Set Approach. In International Conference on Learning Represen-
tations (ICLR), 2017.

[18] Amirata Ghorbani and James Zou. Data Shapley: Equitable Valuation of Data
for Machine Learning. In International Conference on Machine Learning (ICML),
2019.

[19] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas Paper-
not, Murat A. Erdogdu, and Ross J. Anderson. Manipulating SGD with Data Or-
dering Attacks. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

[20] Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the Ne-
cessity of Auditable Algorithmic Definitions for Machine Unlearning. In USENIX
Security Symposium, 2022.

[21] Srinath Setty. Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup. In Annual International Cryptology Conference (CRYPTO), 2020.

[22] Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen
Logeswaran, and Minjoon Seo. Knowledge Unlearning for Mitigating Privacy Risks
in Language Models. Computing Research Repository (CoRR), 2022.

[23] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Ma-
chine Unlearning of Features and Labels. In Symposium on Network and Dis-

184

9 Conclusion

tributed System Security (NDSS), 2023.

[24] Joseph D. Romano, Trang T. Le, William G. La Cava, John T. Gregg, Daniel J.
Goldberg, Praneel Chakraborty, Natasha L. Ray, Daniel S. Himmelstein, Weixuan
Fu, and Jason H. Moore. PMLB v1.0: An Open-Source Dataset Collection for
Benchmarking Machine Learning Methods. Bioinformatics, 2022.

[25] Yinjun Wu, Edgar Dobriban, and Susan B. Davidson. DeltaGrad: Rapid Re-
training of Machine Learning Models. In International Conference on Machine
Learning (ICML), 2020.

[26] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-Delete:
Gradient-Based Methods for Machine Unlearning. In Algorithmic Learning Theory
(ALT), 2021.

[27] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. Graph Unlearning. In ACM Conference on Computer and
Communications Security (CCS), 2021.

[28] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Un-
rolling SGD: Understanding Factors Influencing Machine Unlearning. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2022.

[29] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From Ex-
tractable Collision Resistance to Succinct Non-Interactive Arguments of Knowl-
edge, and Back Again. In Innovations in Theoretical Computer Science (ITCS),
2012.

[30] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohrimenko,
and Bryan Parno. Hash First, Argue Later: Adaptive Verifiable Computations
on Outsourced Data. In ACM Conference on Computer and Communications
Security (CCS), 2016.

[31] Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 2016.

[32] Sebastian Angel, Andrew J. Blumberg, Eleftherios Ioannidis, and Jess Woods.
Efficient Representation of Numerical Optimization Problems for SNARKs. In
USENIX Security Symposium, 2022.

185

C Verifiable and Provably Secure Machine Unlearning

[33] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. Scaling Verifiable
Computation Using Efficient Set Accumulators. In USENIX Security Symposium,
2020.

[34] Jacob Eberhardt and Stefan Tai. ZoKrates - Scalable Privacy-Preserving Off-
Chain Computations. In IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), 2018.

[35] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: Compiler Infrastruc-
ture for Proof Systems, Software Verification, and more. In IEEE Symposium on
Security and Privacy (S&P), 2022.

[36] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A New Hash Function for Zero-Knowledge Proof
Systems. In USENIX Security Symposium, 2021.

[37] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash. Protocol
Specification (Version 2022.3.4), 2022.

[38] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. MiMC: Efficient Encryption and Cryptographic Hashing with Minimal
Multiplicative Complexity. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security (ASIACRYPT), 2016.

[39] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. Ver-
iML: Enabling Integrity Assurances and Fair Payments for Machine Learning as
a Service. IEEE Transactions on Parallel and Distributed Systems (TPDS), 2021.

[40] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Lo-
gistic Regression Model Training based on the Approximate Homomorphic En-
cryption. Cryptology ePrint Archive, 2018.

[41] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang. Secure
Logistic Regression Based on Homomorphic Encryption: Design and Evaluation.
JMIR Medical Informatics, 2018.

[42] Avital Shafran, Gil Segev, Shmuel Peleg, and Yedid Hoshen. Crypto-Oriented Neu-
ral Architecture Design. In IEEE International Conference on Acoustics, Speech

186

https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf

9 Conclusion

and Signal Processing, (ICASSP), 2021.

[43] Inbar Helbitz and Shai Avidan. Reducing ReLU Count for Privacy-Preserving
CNN Speedup. Computing Research Repository (CoRR), 2021.

[44] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Scaling up Trust-
less DNN Inference with Zero-Knowledge Proofs. Computing Research Repository
(CoRR), 2022.

[45] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. ZEN:
Efficient Zero-Knowledge Proofs for Neural Networks. Cryptology ePrint Archive,
2021.

[46] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative Instructions
and Software Model for Isolated Execution. In Workshop on Hardware and Archi-
tectural Support for Security and Privacy (HASP), 2013.

[47] Karan Grover, Shruti Tople, Shweta Shinde, Ranjita Bhagwan, and Ramachan-
dran Ramjee. Privado: Practical and Secure DNN Inference with Enclaves. Com-
puting Research Repository (CoRR), 2018.

[48] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted Execution
Environments on GPUs. In Symposium on Operating Systems Design and Imple-
mentation, (OSDI), 2018.

[49] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious Multi-Party Machine
Learning on Trusted Processors. In USENIX Security Symposium, 2016.

[50] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky Cauldron on
the Dark Land: Understanding Memory Side-Channel Hazards in SGX. In ACM
Conference on Computer and Communications Security (CCS), 2017.

[51] Jia-Si Weng, Shenglong Yao, Yuefeng Du, Junjie Huang, Jian Weng, and Cong
Wang. Proof of Unlearning: Definitions and Instantiation. Computing Research
Repository (CoRR), 2022.

187

C Verifiable and Provably Secure Machine Unlearning

[52] Daniele Perito and Gene Tsudik. Secure Code Update for Embedded Devices
via Proofs of Secure Erasure. In European Symposium on Research in Computer
Security (ESORICS), 2010.

[53] Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. Formalizing
Data Deletion in the Context of the Right to Be Forgotten. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2020.

[54] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity
of Interactive Proof Systems. SIAM Journal on Computing (SICOMP), 1989.

[55] Ji Gao, Sanjam Garg, Mohammad Mahmoody, and Prashant Nalini Vasudevan.
Deletion Inference, Reconstruction, and Compliance in Machine (Un)learning. In
Privacy Enhancing Technologies Symposium (PETS), 2022.

[56] Ahmed Salem, Giovanni Cherubin, David Evans, Boris Köpf, Andrew Paverd,
Anshuman Suri, Shruti Tople, and Santiago Zanella Béguelin. SoK: Let The Pri-
vacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine
Learning. Computing Research Repository (CoRR), 2022.

[57] Xiangshan Gao, Xingjun Ma, Jingyi Wang, Youcheng Sun, Bo Li, Shouling Ji,
Peng Cheng, and Jiming Chen. VeriFi: Towards Verifiable Federated Unlearning.
Computing Research Repository (CoRR), 2022.

[58] David Marco Sommer, Liwei Song, Sameer Wagh, and Prateek Mittal. Towards
Probabilistic Verification of Machine Unlearning. Computing Research Repository
(CoRR), 2020.

[59] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Identifying
Vulnerabilities in the Machine Learning Model Supply Chain. Computing Research
Repository (CoRR), 2017.

[60] Seunghwan Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vCNN: Verifiable
Convolutional Neural Network. Cryptology ePrint Archive, 2020.

[61] Tianyi Liu, Xiang Xie, and Yupeng Zhang. ZkCNN: Zero Knowledge Proofs for
Convolutional Neural Network Predictions and Accuracy. In ACM Conference on
Computer and Communications Security (CCS), 2021.

188

9 Conclusion

[62] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique:
Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine
Learning. In USENIX Security Symposium, 2021.

[63] Srinath TV Setty, Richard McPherson, Andrew J Blumberg, and Michael Walfish.
Making Argument Systems for Outsourced Computation Practical (Sometimes).
In Symposium on Network and Distributed System Security (NDSS), 2012.

[64] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J.
Blumberg, and Michael Walfish. Verifying Computations with State. In ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), 2013.

[65] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J Blumberg,
and Michael Walfish. Taking Proof-Based Verified Computation a Few Steps
Closer to Practicality. In USENIX Security Symposium, 2012.

[66] Victor Vu, Srinath Setty, Andrew J Blumberg, and Michael Walfish. A Hybrid Ar-
chitecture for Interactive Verifiable Computation. In IEEE Symposium on Security
and Privacy (S&P), 2013.

[67] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. Proving the
Correct Execution of Concurrent Services in Zero-Knowledge. In Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[68] Jonathan Lee, Kirill Nikitin, and Srinath Setty. Replicated State Machines without
Replicated Execution. In IEEE Symposium on Security and Privacy (S&P), 2020.

[69] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge. In Annual International Cryptology Conference (CRYPTO), 2013.

[70] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct
Non-Interactive Zero Knowledge for a von Neumann Architecture. In USENIX
Security Symposium, 2014.

[71] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM
Journal on Computing, 2006.

189

C Verifiable and Provably Secure Machine Unlearning

[72] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable Zero
Knowledge with No Trusted Setup. In Annual International Cryptology Conference
(CRYPTO), 2019.

[73] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. Short PCPs Verifiable in Polylogarithmic Time. In IEEE Conference on
Computational Complexity (CCC), 2005.

[74] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the Con-
crete Efficiency of Probabilistically-Checkable Proofs. In Symposium on Theory
of Computing Conference (STOC), 2013.

[75] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive Verifiable Com-
puting: Outsourcing Computation to Untrusted Workers. In Annual International
Cryptology Conference (CRYPTO), 2010.

[76] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
Practical Verifiable Computation. In IEEE Symposium on Security and Privacy
(S&P), 2013.

190

A Our Instantiated Protocol

A Our Instantiated Protocol

A schematic overview of our complete instantiated protocol is given in Figure 4. Addi-
tional algorithms are described below.

HashData(H)
00 Ψ := Hash(d∅)

01 for hd ∈ H :

02 Ψ := Hash(Ψ, hd)

03 return Ψ

AppendHashData(h,H)
04 Ψ := h

05 for hd ∈ H :

06 Ψ := Hash(Ψ, hd)

07 return Ψ

HashDataRecord(u, d = (x, y))

08 hd := Hash(u)

09 for xj ∈ x :

10 hd := Hash(hd ,Hash(xj))

11 hd := Hash(hd ,Hash(y))

12 return hd

HashModel(m = [w0, . . . , wn])

13 hm := Hash(m[0])

14 for wi ∈ m[1:] :

15 hm := Hash(hm ,Hash(wi))

16 return hm

HashState(stf)

17 hstf := Hash(stf [0])

18 for si ∈ hstf [1:] :

19 hstf := Hash(hstf , si)

20 return hstf

ComputeChainPath(u, d,HU)

21 hd := HashDataRecord(u, d)

22 idxd := HU .index(hd)

23 if idxd = ⊥ :

24 return ⊥
25 # get intermediate hash from chain below d

26 Ψ := HashData(HU : idxd
)

27 πu,d := [Ψ]

28 # add path from d

29 for hd ∈ HUidxd+1:
:

30 πu,d .append(hd)

31 return πu,d

VerifyChainPath(u, d, hU , πu,d)

32 # recompute hash Ψ from path πu,d

33 Ψ := Hash(πu,d [0],HashDataRecord(u, d))

34 for node in πu,d [1 :] :

35 Ψ := Hash(Ψ, node)
36 # verify final hash
37 return JΨ = hUK

191

C Verifiable and Provably Secure Machine Unlearning

Users U {(RI , RT , RU), (ppI , ppT , ppU), D̂u ∼ D}u∈U Server S ((RI , RT , RU), (ppI , ppT , ppU), (fI , fT , fU), ppf)

(stf,0,m0) := fI(ppf)

HD0
:= ∅,HU0

:= ∅
com0 := (HashState(stf,0),HashModel(m0),

HashData(HD0),HashData(HU0))

Compute (ϕ0, ω0) ∈ RI using com0 and (stf,0,m0)

Verify ϕ0 valid for com0 π0 ← Π.Prove(RI , ppI , ϕ0, ω0)

if not Π.Vrfy(RI , ppI , π0, ϕ0) : stS,0 := (stf,0,HD0 ,HU0 , com0)

abort D+
0 := ∅, U+

0 := ∅

D+
i := D+

i−1, U+
i := U+

i−1

add data samples
k-th query D+

i := D+
i ∪ {(u, di,k)}

remove data samples
j-th query U+

i := U+
i ∪ {(u, di,j)}

Parse stS,i−1 as (stf,i−1,HDi−1
,HUi−1

, hstfi−1
, hmi−1

, hDi−1
, hUi−1

)

(stf,i,mi) := fT (stf,i−1, D
+
i)

HDi
:= HDi−1

∪ {HashDataRecord(u, d)}(u,d)∈D+
i

comi := (HashState(stf,i),HashModel(mi),

HashData(HDi
), hUi−1

)

Compute (ϕi, ωi) ∈ RT using (hstf,i−1
, hDi−1

, hUi−1
, comi)

and (stfi−1,HUi−1
, D+

i)

Verify ϕi valid for (comi−1, comi) πi ← Π.Prove(RT , ppT , ϕi, ωi)

if not Π.Vrfy(RT , ppT , πi, ϕi) : stS,i := (stf,i,HDi
,HUi

, comi)

abort D+
i := ∅

Parse stS,i−1 as (stf,i−1,HDi−1
,HUi−1

, hstfi−1
, hmi−1

, hDi−1
, hUi−1

)

(stf,i,mi) := fU(stf,i−1, U
+
i)

HUi
:= HUi−1

∪ {HashDataRecord(u, d)}(u,d)∈U+
i

HDi
:= HDi−1

\ {HashDataRecord(u, d)}(u,d)∈U+
i

comi := (HashState(stf,i),HashModel(mi),

HashData(HDi
),HashData(HUi

))

Compute (ϕi, ωi) ∈ RU using (hstf,i−1
, hDi−1

, hUi−1
, comi)

and (stfi−1,HDi−1
, U+

i)

Verify ϕi valid for (comi−1, comi) πi ← Π.Prove(RU , ppU , ϕi, ωi)

if not Π.Vrfy(RU , ppU , πi, ϕi) : stS,i := (stf,i,HDi
,HUi

, comi)

abort
for (u, di,j) ∈ U+

i :

Fetch hUi
from comi πu,di,j ← ComputeChainPath(di,j,HUi

)

if not VerifyChainPath(hUi
, di,j, πu,di,j) : U+

i := ∅
abort

Initialize

i-th iteration

Proof of Training

OR Proof of Unlearning

com0, ρ0 := (ϕ0, π0)

u ∈ U , di,k ∈ D̂u

u ∈ U , di,j ∈ D̂u

train: comi, ρi := (ϕi, πi)

unlearn: comi, ρi := (ϕi, πi)

πu,di,j

Init

VerifyInit

ProveTraining

VerifyTraining

ProveUnlearning

VerifyUnlearning

ProveNonMembership

VerifyNonMembership

Figure 4: Instantiated protocol Φf . We instantiate the protocol for the triple of admissible
functions f = (fI , fT , fU) with two primitives: a SNARK Π, and a hash function Hash.

192

B Completeness Proof

B Completeness Proof

Proof (of Theorem 1). We need to prove the three properties in Definition 1 capturing
the initialization, the proof of training and the proof of unlearning which includes the
proof of non-membership.

Initialization. First, running Init yields the initialized state stf,0 and model m0 obtained
by executing fI . Using the hash function to commit to those two values and additionally
the empty sets HD0 and HU0 , an instance (ϕ0, ω0) ∈ RI can be derived and the SNARK
proof π0 can be created using Π.Prove. By correctness of the relation and completeness
of the SNARK, ϕ0 will be valid for com0 and Π.Vrfy(RI , ppI , π0, ϕ0) = 1.

Proof of update. For the second property, recall the inputs and outputs of ProveTraining
and ProveUnlearning. The state stS,i−1 contains the state stf,i−1, the set HDi−1

of hashed
data records, the set HUi−1

of hashed unlearnt data records and the previous commit-
ment comi−1. In the proof of training, the new state stf,i and the new model mi are
computed by running function fT on stf,i−1 and the set D+

i of data records to be added.
The new sets HDi

and HUi
are computed from the previous ones and updated with

D+
i . The commitment is computed by hashing the four components.

Then the training instance (ϕi, ωi) ∈ RT can be derived and the SNARK proof πi

computed. The proof attests (cf. Figure 3) that (1) mi was computed correctly since fT

was executed, (2) the training data does not contain unlearnt record since the hashes
of the new data records are not contained in HUi

, and (3) the set of unlearnt data
records has not changed since the commitments to the unlearnt data records are the
same. By correctness of the relation and perfect completeness of the SNARK, we have
Π.Vrfy(RT , ppT , πi, ϕi) = 1.

Note that there exists a special case where the server is unable to create a proof
although the datasets are valid. This is the case whenever there exist two distinct
data records (u, d) ∈ D+

i , (u′, d′) ∈ Ui, where Ui =
⋃

j∈[i] U
+
j is the dataset implicitly

contained in HUi
, such that HashDataRecord(u, d) = HashDataRecord(u′, d′). However,

we only require computational completeness and assume that the datasets are provided
by a PPT adversary. Then this translates to finding a collision for the hash function
which happens with negligible probability if the hash function is collision-resistance.
Hence, VerifyTraining will output 1 with probability 1− negl(λ).

193

C Verifiable and Provably Secure Machine Unlearning

Proof of unlearning. Completeness for the proof of unlearning proceeds similar. The
new state stf,i and the new model mi are computed by running function fU on stf,i−1

and the set U+
i of data records to be deleted. The new sets HDi

and HUi
are computed

from the previous ones and updated by removing and appending U+
i , respectively. The

commitment is computed by hashing the four components.
The unlearning instance (ϕi, ωi) ∈ RU is derived and the SNARK proof πi that

is computed attests (cf. Figure 3) that (1) mi was computed correctly since fU was
executed, (2) the training data does not contain unlearnt record since we removed
the records in U+

i from HDi
, and (3) previous set of unlearnt data records is a sub-

set of the updated set since we added the records in U+
i to HUi

to which we com-
mit. By correctness of the relation and perfect completeness of the SNARK, we have
Π.Vrfy(RU , ppU , πi, ϕi) = 1 and VerifyUnlearn will output 1 with probability 1.

Finally, consider the algorithm ProveNonMembership. If a data record (u, d) was
unlearnt in iteration i, then its hash is present in HUi

. The proof of non-membership
πu,d consists of the chain path to (u, d) in the chain ofHUi

. Let comi be the commitment
for this iteration, then by correctness of the tree path algorithm, VerifyNonMembership

will output 1 with probability 1.

C Security Proof

Proof (of Theorem 2). Let A be an adversary against unlearning security (as defined in
Figure 2) of our instantiation. We will first argue that for all A there exists an extractor
E that outputs the underlying datasets Di. This follows directly from the knowledge
soundness of the SNARK for relations RI , RT and RU . For this, look at the private
inputs to the circuits in Figure 3 which translate to the witness. Initialization gives
us that D0 = ∅. The proof of training inputs D+

i and the proof of unlearning inputs
U+
i such that we can extract Di = Di−1 ∪D+

i if modei = train and Di = Di−1 \ U+
i if

modei = unlearn.
We will now prove the theorem by the sequence of games given in Figure 5 and

analyze the probability that these games will output 1.

Game G0. Let G0 be the original game GameUnlearn and E be the extractor. Recall that
the adversary must output a sequence of tuples (k, (u, d), πu,d , {modei: comi, ρi}i∈[0:ℓ])
for some ℓ ∈ N, where comi = (hstf,i , hmi

, hDi
, hUi

) and ρi = (ϕi, πi) for i ∈ [0 : ℓ]. We
iterate over the winning conditions and return 0 as soon as one of them is violated

194

C Security Proof

G0-G2

00 ppI ← Π.Setup(1λ, RI)

01 ppT ← Π.Setup(1λ, RT)

02 ppU ← Π.Setup(1λ, RU)

03 (k, (u, d), πu,d , {modei: (hstf,i , hmi , hDi , hUi), (ϕi, πi)}i∈[0:ℓ];
{Di}i∈[0:ℓ])← (A‖E)(RI , RT , RU , ppI , ppT , ppU , fI , fT , fU , ppf)

04

05 # Pre-processing
06 U0 := ∅
07 for i ∈ [ℓ]

08 if modei = train:
09 D+

i := Di \Di−1

10 if modei = unlearn:
11 U+

i := Di−1 \Di

12 Ui := Ui−1 ∪ U+
i

13

14 # Verify commitments
15 for i ∈ [0 : ℓ] :

16 HDi
:= {HashDataRecord(u, d)}(u,d)∈Di

17 h′Di
:= HashData(HDi)

18 if h′Di
6= hDi :

19 return 0

20

21 # Verify initialization
22 Verify ϕ0 valid for (hstf,0 , hm0 , hD0 , hU0)

23 if not Π.Vrfy(RI , ppI , π0, ϕ0) :

24 return 0

25

26 # Re-compute initialization
27 (stf,0,m0) := fI(ppf) // G1-G2

28 if hstf,0 6= HashState(hstf,0) or hm0 6= HashModel(m0) : // G1-G2

29 return 0 // G1-G2

30 # Verify proof of training
31 for i ∈ [ℓ] s. t. modei = train:
32 Verify ϕi valid for (hstf,i , hmi , hDi , hUi)

33 if not Π.Vrfy(RT , ppT , πi, ϕi) :

34 return 0

35

36 # Verify proof of unlearning
37 for i ∈ [ℓ] s. t. modei = unlearn:
38 Verify ϕi valid for (hstf,i , hmi , hDi , hUi)

39 if not Π.Vrfy(RU , ppU , πi, ϕi) :

40 return 0

41

42 # Re-compute state and model and compare to commitment
43 for i ∈ [ℓ] : // G1-G2

44 if modei = train: // G1-G2

45 (stf,i,mi) := fT (stf,i−1, D
+
i) // G1-G2

46 if modei = unlearn: // G1-G2

47 (stf,i,mi) := fT (stf,i−1, U
+
i) // G1-G2

48 if hstf,i 6= HashState(stf,i) or hmi 6= HashModel(mi) : // G1-G2

49 return 0 // G1-G2

50

51 # Verify proof of non-membership
52 if not VerifyChainPath(hUk

, u, d, πu,d) :

53 return 0

54

55 # Check membership of d in Ui

56 for i ∈ [k : ℓ] : // G2

57 if (u, d) /∈ Ui : // G2

58 return 0 // G2

59

60 # Adversary wins if point unlearned & re-added
61 if k < ℓ and (u, d) ∈ U+

k and (u, d) ∈ Dℓ :

62 return 1

63 return 0

Figure 5: Games G0-G2 for the proof of Theorem 2. We prove unlearning security for
our instantiated protocol Φf in Figure 4, where f = (fI , fT , fU) and hyperparameter ppf are
fixed by the participating parties and determine relations RI , RT and RU .

(cf. Figure 5). For book-keeping we also compute all sets of unlearnt data points Ui, as
well as the sets D+

i , U+
i from Di as described for the extractor. Note that this is only

a conceptual change at this point and we have

Pr[G0 ⇒ 1] = Pr[GameUnlearnA,E,Φf ,D(1
λ)⇒ 1] .

Game G1. In G1, we compute the state stf,i and the model mi for each iteration from
the corresponding datasets by applying fI , fT and fU . We then check whether the

195

C Verifiable and Provably Secure Machine Unlearning

hashes of state and model correspond to hstf,i and hmi
in the commitment. If this is

not the case, the game outputs 0. We claim

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ negl(λ) .

To prove the claim we argue in the following steps:

• First, πi proves that the adversary knows a state st′f,i and a dataset D+
i
′ for each

proof of training (or a dataset U+
i

′ for each proof of unlearning) such that model
m′

i was computed by applying function fT (or function fU) to state st′f,i−1 and
dataset D+

i
′ (or dataset U+

i
′). It also proves that the commitment aligns with the

inputs. Since the functions are deterministic, we thus have hstf,i = HashState(st′f,i)

and hmi
= HashData(m′

i) as well as hDi
= HashData(H′

Di
), where H′

Di
is the set

of all hashed data records in D′
i.

By soundness of the SNARK, the adversary can only forge a proof for an invalid
statement with negligible probability, so we can assume the proof was gener-
ated honestly with a witness. By knowledge soundness, the extractor is able to
compute this witness such that D′

i = Di.

• Second, we claim that then st′f,i = stf,i and m′
i = mi are the actual state and

model used for the next iteration. This is true unless the adversary finds a collision
in the hash function such that HashState(st′f,i) = HashState(stf,i) = hstf,i or
HashModel(m′

i) = HashModel(mi) = hmi
, which we assume to happen only with

negligible probability.

Game G2. In G2, we check whether the data record (u, d) output by A is contained in
the underlying datasets Ui of the k-th and all subsequent iterations. We will show that

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ negl(λ) .

For this we first look again at the SNARK proof πi and the underlying circuits. If
a proof of training is performed, the adversary must prove that hUi

= hUi−1
. This

implies—assuming no hash collision occurs—that HUi
= HUi−1

and Ui = Ui−1. If a
proof of unlearning is performed, the SNARK proof ensures that HUi−1

⊂ HUi
and thus

Ui−1 ⊂ Ui, again using collision-resistance of the hash function. Thus, if (u, d) ∈ Uk, it
must also be true that (u, d) ∈ Uk+1, ..., (u, d) ∈ Uℓ. By soundness of the SNARK, the
adversary cannot prove a false statement, so the above claims must hold.

196

C Security Proof

We also know that (u, d) ∈ Uk since the proof of non-membership consists of the path
from the hashed data record (u, d) to the hash hUk

contained in the k-th commitment.
Since the adversary can only win if the proof verifies successfully, we know that in this
case the hash value of (u, d), in the following denoted by hu,d := HashDataRecord(u, d),
must be a node in the hash chain constructed from HUk

. Unless the adversary finds
another data record (u′, d′) such that HashDataRecord(u′, d′) maps to the same hash
value hu,d—which happens with negligible probability—the record (u, d) must be con-
tained in Uk.

Finally, we show that Pr[G2 ⇒ 1] ≤ negl(λ). For this, recall that πi also attests that
no unlearnt data point is contained in the dataset, in particular that the intersection
HDi

∩ HUi
is empty. Together with the fact that the commitments hDi

and hUi
are

constructed from HDi
and HUi

(due to soundness of the SNARK), the hashed datasets
must have been obtained from the corresponding dataset Di and Ui (unless the adver-
sary has found a collision in the hash function). Combining with previous results, this
implies that Di ∩ Ui = ∅ for all i ∈ [ℓ]. As shown above, we know that (u, d) ∈ Uℓ.
The final winning condition requires that (u, d) ∈ Dℓ. This cannot be the case since it
would contradict the fact that the intersection of the two sets is empty, which proves
the final claim.

Collecting the probabilities yields

Pr[GameUnlearnA,E,Φf ,D(1
λ)] ≤ negl(λ) ,

which concludes the proof of Theorem 2.

197

	I Introduction
	1 Introduction
	2 Background
	2.1 Machine Learning
	2.2 Adversarial Machine Learning

	3 Security of ML Systems
	3.1 Feature-Problem-Space Attacks
	3.2 Domain-Specific Priors
	3.3 Security Beyond the Model

	4 Conclusions
	References

	II Publications
	List of Publications
	A Subverting Automatic Paper-Reviewer Assignment
	B Taming Audio Adversarial Examples
	C Verifiable and Provably Secure Machine Unlearning

