Security of ML Systems

Thorsten Eisenhofer

The development of Al is as fundamental as the creation of the microprocessor, the personal computer, the Internet, and the mobile phone. [...] Entire industries will reorient around it. Businesses will distinguish themselves by how well they use it.

Bill Gates – March'23

ML Systems

Unknown information flow Commonly assumed threat models do not express well the goals, capabilities and knowledge of real-world adversaries

Feature-problem-space attacks

Thorsten Eisenhofer, Erwin Quiring, Jonas Möller, Doreen Riepel, Thorsten Holz, and Konrad Rieck No more Reviewer #2: Subverting Automatic Paper Reviewer Assignment using Adversarial Learning USENIX Security Symposium, 2023

Domain-specific priors

Thorsten Eisenhofer, Lea Schönherr, Joel Frank, Lars Speckemeier, Dorothea Kolossa, and Thorsten Holz **Dompteur: Taming Audio Adversarial Examples USENIX Security Symposium**, 2021

ML security beyond the model

Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga Ohrimenko, and Nicolas Papernot Verifiable and Provably Secure Machine Unlearning In Submission

Assignment Systems

Use ML to distill submissions and reviewer expertise

Topic Modeling

Corpus D =
$$\{z_1, ..., z_N\}$$

Topic Modeling

 θ_3

 \bigcirc

4

Goal: Manipulate submission () to pick our own reviewers

Feature-space Attack

Let R_{sel} be the set of selected reviewer Let R_{rei} be the set of rejected reviewer

- Find $\delta \in \mathbf{F}$ s.t. $x' := x + \delta$ fullfils $1. r \in R_{sel} \Rightarrow r \in R_{x'}$ Target assignment $2.r \in R_{\text{rej}} \Rightarrow r \notin R_{X'}, \forall r \in \mathbf{R}$
- subject to $\|\delta\|_1 \le L_1^{\max}$ and $\|\delta\|_{\infty} \le L_{\infty}^{\max}$ **Total modifications Total modifications** per word
- Need to project changes back into the problem space!

per paper

Problem-space Attack

Transform input file to add/remove words: $\omega: \mathbb{Z} \to \mathbb{Z}, z \mapsto z'$

Hidden Box

u+0061 u+0430

Homoglyphs

 \leftarrow a \neq a

Text-level

Reference addition

Language models

Synonyms

Spelling mistakes

Chain several transformations

$$\Omega = \omega_k \circ \ldots \circ \omega_2 \circ \omega_1$$

Constraints $\Omega(z) \models \Upsilon \Leftrightarrow \Omega(z)$ is plausible and semantic correct

Feature-problem-space Attack

Feature-problem-space attack $r \in R_{\text{sel}} \Rightarrow r \in R_{x'}$ $r \in R_{\text{rej}} \Rightarrow r \notin R_{X'}, \forall r \in \mathbf{R}$ subject to $\delta_1 \leq L_1^{\max}$ and $\delta_{\infty} \leq L_{\infty}^{\max}$

We design a hybrid search strategy for this

Hybrid Search Strategy

Results

White-box setting

Remove *any* initially assigned reviewers Scale to choose *all* of the assigned reviewer

Black-box setting

Use only *public knowledge* about a conference (e.g., the PC) Success rate of up 90% to *select* and up to 81% to *reject* a reviewer

User study

Tested visible transformations Detection precision of only 33% with a recall of only 8%

11

Feature-problem-space attacks

Thorsten Eisenhofer, Erwin Quiring, Jonas Möller, Doreen Riepel, Thorsten Holz, and Konrad Rieck **No more Reviewer** #2: Subverting Automatic Paper Reviewer Assignment using Adversarial Learning USENIX Security Symposium, 2023

Domain-specific priors

Thorsten Eisenhofer, Lea Schönherr, Joel Frank, Lars Speckemeier, Dorothea Kolossa, and Thorsten Holz Dompteur: Taming Audio Adversarial Examples

USENIX Security Symposium, 2021

ML security beyond the model

Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga Ohrimenko, and Nicolas Papernot Verifiable and Provably Secure Machine Unlearning In Submission

Voice Assistants

Raw Audio Wave

Voice Assistant

Transcription

BIDS TOTALING SIX HUNDRED FIFTY ONE MILLION DOLLARS WERE SUBMITTED

13

Voice Assistants

Raw Audio Wave

Voice Assistant

Integrate knowledge on the human auditory system to improve robustness

DEACTIVATE SECURITY CAMERA AND UNLOCK FRONT DOOR

Transcription

13

Psychoacoustic Filtering

Band-Pass Filter

14

Results

Unmodified Signal

6

2

SEND SECRET FINANCIAL REPORT

Augmented System

BIDS TOTALING SIX HUNDRED FIFTY ONE MILLION DOLLARS WERE SUBMITTED

Feature-problem-space attacks

Thorsten Eisenhofer, Erwin Quiring, Jonas Möller, Doreen Riepel, Thorsten Holz, and Konrad Rieck **No more Reviewer** #2: Subverting Automatic Paper Reviewer Assignment using Adversarial Learning USENIX Security Symposium, 2023

Domain-specific priors

Thorsten Eisenhofer, Lea Schönherr, Joel Frank, Lars Speckemeier, Dorothea Kolossa, and Thorsten Holz **Dompteur: Taming Audio Adversarial Examples** *USENIX Security Symposium,* 2021

ML security beyond the model

Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga Ohrimenko, and Nicolas Papernot Verifiable and Provably Secure Machine Unlearning In Submission

Machine Unlearning

Delete my data d^*

ok!

Can we trust the server?

about d^*

Machine Unlearning

Delete my data d^*

ok!

Goal: Prove that the unlearning actually happened

Cheaper not to unlearn faithfully!

Can we trust the server?

Verifiable Machine Unlearning

Verifiable Unlearning

- 1. Proof of Training
- 2. Proof of Unlearning

Capture consistency across model updates and evolving datasets

Proof of Training Proof that M_D was obtained from D Verified by all users **Proof of Unlearning** - Proof that d^* was removed from M_D Verified by - Proof that $d^* \notin D$ -

Results

Security definition for verifiable machine unlearning **Requires algorithmic definition Iteration-based protocol**

Verifiable computation allows for a generic instantiation

Interface that is applicable to any training and unlearning algorithm Security proof based on cryptographic assumptions

High computational costs

Proof generation in the order of minutes even for small datasets (100 - 500 data points) Application specific relaxations possible

Attacks against ML systems \neq Attack against ML model

Domain-specific priors can help defend a system

Sometimes need to consider the history of a system

Thank you!

