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“The development of AI is as 
fundamental as the creation of the 
microprocessor, the personal computer, 
the Internet, and the mobile phone. […] 
Entire industries will reorient around it. 
Businesses will distinguish themselves by 
how well they use it.

Bill Gates — March’23 



ML Systems

Commonly assumed threat models do not express well the  
goals, capabilities and knowledge of real-world adversaries 2
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Assignment Systems
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Use ML to distill submissions and reviewer expertise
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Topic Modeling
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Goal: Manipulate submission  !  to pick our own reviewers

Topic Modeling
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Feature-space Attack
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1.  
2. 

r ∈ Rsel ⇒ r ∈ Rx′ 

r ∈ Rrej ⇒ r ∉ Rx′ , ∀r ∈ R
subject to � � δ � � 1 ≤ Lmax

1 � � δ � � ∞ ≤ Lmax
∞and

Need to project changes back into the problem space!
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Problem-space Attack
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ω : Z → Z, z ↦ z′ Transform input file to add/remove words:

Chain several transformations
Ω = ωk ∘ … ∘ ω2 ∘ ω1

Constraints
   

is plausible and semantic correct
Ω(z) ⊧ Υ ⇔ Ω(z)

Text-level
Synonyms 

Language models
Reference addition

Spelling mistakes

Homoglyphs 
Hidden Box

Format-/ and encoding-level

a ≠ а 
u+0061 u+0430 



Feature-problem-space Attack
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with   ,    and x = Φ(ρ(z)) x′ = Φ(ρ(Ω(z))) δ = (x′ − x)

  
 
r ∈ Rsel ⇒ r ∈ Rx′ 

r ∈ Rrej ⇒ r ∉ Rx′ , ∀r ∈ R
subject to � � δ � � 1 ≤ Lmax

1 � � δ � � ∞ ≤ Lmax
∞and

Feature-problem-space attack

We design a hybrid search strategy for this
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Tested visible transformations 
Detection precision of only 33% with a recall of only 8%

User study

Results
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Remove any initially assigned reviewers 
Scale to choose all of the assigned reviewer

White-box setting

Use only public knowledge about a conference (e.g., the PC) 
Success rate of up 90% to select and up to 81% to reject a reviewer

Black-box setting
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Voice Assistants

TranscriptionVoice Assistant

BIDS TOTALING SIX 
HUNDRED FIFTY ONE 

MILLION DOLLARS 
WERE SUBMITTED

Raw Audio Wave
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Voice Assistants

Integrate knowledge on the human auditory system to improve robustness

DEACTIVATE 
SECURITY CAMERA 

AND UNLOCK 
FRONT DOOR

TranscriptionVoice AssistantRaw Audio Wave

13



Psychoacoustic Filtering
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Results
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Machine Unlearning

Delete my data  d*

Can we trust the server?

Server

D = {d1, ⋯, dN}

D′ = D∖{d*}

MD

 might leak 
about  

MD
d*

M′ D′ 

ok!
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Cheaper not to 
unlearn faithfully! 

M′ D′ 

Machine Unlearning

Goal: Prove that the unlearning actually happened

Delete my data  d*

Server

D = {d1, ⋯, dN}

D′ = D∖{d*}

MD

ok!

Can we trust the server?
17



Verifiable Machine Unlearning

Capture consistency across model updates and evolving datasets
18

Proof of Unlearning 
- Proof that  was removed from  
- Proof that 

d* MD
d* ∉ D

Verifiable Unlearning 
1. Proof of Training 
2. Proof of Unlearning 

Proof of Training 
Proof that  was obtained from MD D

Verified by 
owner of d*

Verified by 
all users



Results
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Requires algorithmic definition 
Iteration-based protocol

Security definition for verifiable machine unlearning

Interface that is applicable to any training and unlearning algorithm 
Security proof based on cryptographic assumptions

Verifiable computation allows for a generic instantiation

Proof generation in the order of  minutes even for small datasets (100 - 500 data points) 
Application specific relaxations possible

High computational costs



Take Aways

Thank you!
Sometimes need to consider the history of a system

Attacks against ML systems  Attack against ML model≠

Domain-specific priors can help defend a system

Fin


