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Abstract

Adversarial examples seem to be inevitable. These specifi-
cally crafted inputs allow attackers to arbitrarily manipulate
machine learning systems. Even worse, they often seem harm-
less to human observers. In our digital society, this poses a
significant threat. For example, Automatic Speech Recogni-
tion (ASR) systems, which serve as hands-free interfaces to
many kinds of systems, can be attacked with inputs incompre-
hensible for human listeners. The research community has
unsuccessfully tried several approaches to tackle this problem.

In this paper we propose a different perspective: We accept
the presence of adversarial examples against ASR systems,
but we require them to be perceivable by human listeners. By
applying the principles of psychoacoustics, we can remove
semantically irrelevant information from the ASR input and
train a model that resembles human perception more closely.
We implement our idea in a tool named DOMPTEUR' and
demonstrate that our augmented system, in contrast to an un-
modified baseline, successfully focuses on perceptible ranges
of the input signal. This change forces adversarial examples
into the audible range, while using minimal computational
overhead and preserving benign performance. To evaluate
our approach, we construct an adaptive attacker that actively
tries to avoid our augmentations and demonstrate that adver-
sarial examples from this attacker remain clearly perceivable.
Finally, we substantiate our claims by performing a hearing
test with crowd-sourced human listeners.

1 Introduction

The advent of deep learning has changed our digital society.
Starting from simple recommendation techniques [ 1] or image
recognition applications [2], machine-learning systems have
evolved to solve and play games on par with humans [3-6], to
predict protein structures [7], identify faces [8], or recognize
speech at the level of human listeners [9]. These systems
are now virtually ubiquitous and are being granted access to
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critical and sensitive parts of our daily lives. They serve as our
personal assistants [10], unlock our smart homes’ doors [11],
or drive our autonomous cars [12].

Given these circumstances, the discovery of adversarial
examples [13] has had a shattering impact. These specifi-
cally crafted inputs can completely mislead machine learning-
based systems. Mainly studied for image recognition [13],
in this work, we study how adversarial examples can affect
Automatic Speech Recognition (ASR) systems. Preliminary
research has already transferred adversarial attacks to the au-
dio domain [14—19]. The most advanced attacks start from
a harmless input signal and change the model’s prediction
towards a target transcription while simultaneously hiding
their malicious intent in the inaudible audio spectrum.

To address such attacks, the research community has de-
veloped various defense mechanisms [20-25]. All of the
proposed defenses—in the ever-lasting cat-and-mouse game
between attackers and defenders—have subsequently been
broken [26]. Recently, Shamir et al. [27] even demonstrated
that, given certain constraints, we can expect to always find
adversarial examples for our models.

Considering these circumstances, we ask the following
research question: When we accept that adversarial examples
exist, what else can we do? We propose a paradigm shift:
Instead of preventing all adversarial examples, we accept the
presence of some, but we want them to be audibly changed.

To achieve this shift, we take inspiration from the machine
learning community, which sheds a different light on adver-
sarial examples: Illyas et al. [28] interpret the presence of
adversarial examples as a disconnection between human ex-
pectations and the reality of a mathematical function trained
to minimize an objective. We tend to think that machine learn-
ing models must learn meaningful features, e. g., a cat has
paws. However, this is a human’s perspective on what makes
a cat a cat. Machine learning systems instead use any avail-
able feature they can incorporate in their decision process.
Consequently, Illyas et al. demonstrate that image classifiers
utilize so-called brittle features, which are highly predictive,
yet not recognizable by humans.
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Sprachassistenten kennen das Wetter und spielen auf
Sprachkommando Musik. Forscher zeigen nun, dass die
vermeintlich intelligenten Lautsprecher oft mithéren, obwohl sie
nicht sollten.
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IN OUR DEFARTMENT, WE EXPLORE How MACHINE LEARNING (ML) CAN BE VSED To
BUILD INTELLIGENT SECURITY SYSTEMS THAT CAN ADAPT TO NoVEL THREATS AND
ATTACK VECTORS. WE ALSO AIM TO IMPRoVE THE EXPLAINABILITY AND TRANSPARENCY
OF ML ALGORITHMS SO THAT HUMANS CAN BETTER ONDERSTAND AND USE THEM IN
PRACTICE. AND THERE HE IS, ML., ONE OF OUR MOST IMPORTANT EMPLOYEES. WHY
DON'T YOU ALSO SAY A FEW WoRDSZ

SURE, MAE. | AM ML, A BRANCH OF ARTIFICIAL
INTELUGENCE (A). | LOVE MY OCCUPATION HERE, WHERE | CAN
DO WHAT | LOVE ALL DAY: LEARN! EVERYTHING! MY METHDS
HAVE BEEN SUCCESSFULLY USED IN MANY AREAS, AND | AM
EXCITED TO SEE WHAT THE FUTURE Helbf FOR ME.

Learn how my algorithms Fulfill everyday tasks, for Learn patterns and correla
can themselves be made example, translating a text tions from data, and con-

mo

robust against attacks. rom one language to another. tinue to improve without
being explicitly programmed.

PUH, THAT'S A
TOUSH ONE
SHE SAID “HELLe".

ACTUALLY, NOW | REMEMBER SOMETHI
PPENED TO ME A WHILE A

[] WHAT HAPTENED HERE, HONEY? WHO
. ORDERED A DelLL HOUSE AND COOKIES?
“ l

AND THAT'S HOW A CUTE CONVERSATION BETWEEN
A GIRL FRON TEXAS AND A SPEECH RECOGNITION SISTEM
ENDED IN THE SRDERING oF AN EXPENSIVE Doll HOUSE
AND FOUR POUNDS OF CoOKIES!

SMART SPEAKER REACTED
TO THE TV.

1
Develop intelligent IV OUR DEPARTMENT WE
security systems that can FOLLW THREE NAIV G0ALS:
keep pace with the
evolution of attacks.

Study novel
The resulting intelligent methods for
systems will be able to: building robust
(a) detect and analyze and resilient ML
novel threats with little algorithms.
human interaction,
(b) provide correct results
even in the face of attacks,
(c) provide explanations
for ML decisions to create
transparency and fairness.

Investigate how
large-scale data
analysis and a close
intertwining of ML
and security can help
us to build intelligent
security systems.

WE INVESTIGATE HOW To MAKE SUCH METHODS MORE ROBUST SO THAT
AN ATTACKER CANNOT BIFASS OR FOOL THEM. WE FoCUS ON DEEr
NEURAL NETWORKS, BECAUSE THIS METHOD IS VERY PROMISING AND

HAS ENABLED MANY BREAKTHROUGHS IN RECENT YEARS.

ACTUALLY, LOTS OF My SKILS
ARE BASED ON THESE

ADVERSARIAL EXAMPLES: WE WANT
TO CREATE AN AUDIO SIENAL THAT
A HUNAN UNDERSTANDS AS A
CERTAIN SENTENCE A" WHIE A 3 X
MACHINE RECOGNTZES A COMPLETELY An Adversarial Example is a
DIFFERENT SENTENCE &' specially manipulated input toa
deep neural network that inten
tionally causes it to misclassify.
The manipulation is done in such
a way that a human cannot no-
tice it or does not recognize any
discrepancy. For example, for a
neural network trained in speech
recognition, the input audio might
lightly altered. These chang
es can be inaudible to humans,
but still lead to a misinterpreta-
tion by the network.

OUR ATTACK CAN BE SVCCESSFULLY
PLAYED THROUGH THE AIR FROM A
LOUDSPEAKER TO A MICROPHONE,

OK.IF You SAY S0
CONMAND "OPEN ALL
DOORS™ EXECYTED

OH, NO! ALSO

THE DOOR TO

MY CARReT
STASH?!




Beyond academia

Different abstraction levels
Reduced complexity

Visualizations vs. technical details

Caveat: Overselling
Work together and communicate simplifying assumptions

Decline requests when you're not comfortable

CASA swveesrr - U



Communicating Research

Beyond academia

Interdisciplinary communities

CASA



Interdisciplinary communities

Cryptography for trustworthy
machine learning

Provably secure implementation of
the right to be forgotten

Researchers from different tields

Verifiable and Provably Secure Machine Unlearning

ABSTRACT

Machine unlearning aims to remove points from the training dataset
of a machine learning model after training; for example when a
user requests their data to be deleted. While many machine un-
learning methods have been proposed, none of them enable users
to audit the procedure. Furthermore, recent work shows a user is
unable lo verify if their data was unlearnt from an inspection of
the model alone. Rather than reasoning aboul model parameters,
we propose to view verifiable unlearning as a security problem.
To this end, we present the first cryptographic definition of -
able unlearning to formally capture the guarantees of a machine
unlearning system. In this framework, the server first compute:
a proof that the model wa:

data point d requested to b

using an unlearning algorithm. It then provides a proof of the cor-
rect execution of unlearning and that d ¢ D', where D’ is the new
Lraining dalasel. Our [ramework is generally applicable lo different
unlearning techniques that we abstract as admissible functions. We
instantiate the framework, based on cryptographic assumptions,
using SNARKSs and hash chains. Finally, we implement the protacol
for three different unlearning techniques

siac, and optimization-based) to validate its feasibility for linear
regression, logistic regression, and neural networks.

1 INTRODUCTION

The right to be forgotten entitles individuals to self-determine the
possession of their private data and compel its deletion. In prac-
lice, this is now mandated by recent regulations like the GDPR [2],
CCPA [3], or PIPEDA [4]. Consider the case where a company or
service provider collects data from its users. These regulations al-
low users to request a deletion of their data, and legally compels
the company to fulfil the request. However, this can be challenging
when the data is used for downstream analyses, e.g., training ma-
chine learning (ML) models, where the relationship between model
parameters and the data used to obtain them is complex [44]. In
particular, ML. madels are known to memorize information from
their training set [18, 23], resulling in a myriad of altacks against
the privacy of training data [20, 47].

Thus, techniques have been introduced for unlearning: a trained
model is updated to remove the influence a training point had on
the model's parameters and predictions [19]. Yet, regardless of the
particular approach, existing techniques [8, 16, 31, 34, 38, 58, 75]
suffer from one critical limilation: they are unable Lo provide the
user with a proof that their data was indeed unlearnt. Put another
way, the user is asked to blindly trust that the server executed the
unlearning algorithm to remove their data with no abhility to verify
this. This is problematic because dishonest service providers may
falsify unlearning to avoid paying the large computational costs or

ntain model utility [30, 59].
ifying that a point is unlearnt is non-trivial from
the user’s perspective. A primary reason is that users (or third-party

Anonymous St M CC: n mark

auditors) cannot determine whether a data point is unlearnt (or

not) by comparing the model’s predictions or parameters before

and after claimed unlearning. The complex relationship between

training data, models' paramelers, and their predictions make it

difficult to isolate the effects of any training poinl. In fact, prior

work [65, 68] demonstrates that a model’s parameters can be iden-
when trained with or without a data point.

o address these concerns, we prapose a eryptographic approach
to verify unlearning. Rather than trying to verify unlearning by
examining changes in the model, we the service provider (

rver) to present a cryptog ic proof that an agreed-upon

unlearning process w ed. This leads us to view unlearning
as a security problem that we aim to solve with formal guarantees.

In this paper we propose the first formal security definition of ver-
ifiable machine unlearning. Our framework describes an iteration-
based protocol and requires the server to prove that it has honestly
updated the model and dataset in each iteration, either due to tra
ing with new data or unlearning previously used data. Only then
does the user have sufficient guarantees about deletion of their
data. Under this definition, we can instantiate protocols using any
unlearning technique and any cryptographic primitives thal have
appropriale securily guaranlees.

We identified several challenges while developing the framework
that we believe are inherent to unlearning.

ng unlearning cannot be solved by naive one-shot

verifiable computation as it requires a user to be able to

y that their data was not re-added at later stages. Hence,

the definition has to capture all model updates due to new
points added or points being deleted.

The relationship between an updated model and the evalving
dataset needs to be formally captured for verification. Far
example, a naive way would be to define this relationship as
a re-training function, i.e., the updated model is the result of
training on the evolved dataset. This can be view “exact
unlearning”. However, ¢

ing techniques exist, we define this relationship

functions that we call admissible functions. This abstraction
caplures the relationship between models and datasets via
initialization, training and unlearning functions.

) As we observe above, the securily definition needs to cap-
ture consistency of data during training and unlearning, and
across model updates and evolving datasets. Though this can
be done by passing the whole dataset between the verifica-
tion steps (training and unlearning) and sending data to the
user, we aim to verify consistency in a succinct manner. To
this end, we define a strong notion of extractor-based secu-
rity, capturing that the server must know some underlying
dataset in order to compute a valid proof.

Our framework is general and we later demonstrate its appli
cability to three different unlearning lechniques. Notably, none of
these have been praved using verifiable computation before. We
focus our discussion below on re-training based unlearning, one of

Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga Ohrimenko, and Nicolas Papernot

“Verifiable and Provably Secure Machine Unlearning”, In Submission
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Interactive Protocol — Proof of Update
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ti= @, UF = ~
Df =0,Ut =0 User U ( Dy, ) Server § (D,U)

k-th addition request M D,-+ = Di,+ U {d;x}

j-th deletion request dij € Dy U[.+ = Ui+ U {d;;}
add d; € Dy D :=Du{d;}

adaptive queries
SO0 (st;, m;, comy, p;) < (st;_y, pub, D}, U) from different users delete d; € Dy

D =D\ {d;}
U :=Uu {d;}

(pub, com;_;, com;, p;)
com; := (Commit(D,—), Commit(mi))
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(2) Ui-1 € U;
B)U;nD; =0

(Sti, pllb, dl]) V dl} € Ul+
Prove d; ; &€ D; by proving d; ; € U;

(pub, d; j, com;, ndi,j)

m; ¢ ML model for D; Training dataset: D; == U e[y D \ Ujen Ut
com; : commitmentto D; and m;
p; + proof of update

Unlearn dataset: U; = Ujep; Ut

AUDIENCE: AUDIENCE:
CRYPTOGRAPHERS RESEARCHERS IN SECURITY / ML



Interdisciplinary communities

Work on interesting problems on the edge of communities
Develop a common language across communities

Opportunity to work with and learn from experts of different fields

Caveat: Underselling

Solution might be trivial within each community
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