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Abstract—Voice assistants like Amazon’s Alexa, Google's As-
sistant, or Apple's Sirl, have hecome the primary (volce) interface
in smart speakers that can be found in milllons of households.
For privacy reasons, these speakers analyze every sound in their
emvironment for their respective wake word like “Alexa™ or “Hey
Siri,” before uploading the aundio stream to the clowd for farther
provessing. Previous work reported on the imsccurate wake word
detection, which can be tricked using similar words or sounds
like “cocaine noodles™ instead of “OK Google”

In this paper, we perform a comprehensive analysis of such
accidental triggers, L e., sounds that should not have triggered the
vaice assistant, but did. More specifically, we automate the process
of finding accidental triggers and measure their prevalence across
11 smart speakers from 8 different manufacturers using everyday
medin such as TV shows, news, and other kinds of audio datasets.
To systematically detect acchdental triggers, we describe 2 method
to artificially cralt such triggers using a pronouncing dictionary
and a weighted, phone-hased Levenshtein distance. In total, we
have found hundreds of accidental triggers, Moreover, we explore
potential gender and language biases and analyze the repro-
duocibility. Finally, we discuss the resulting privacy implications
of acchdental triggers and explore countermeasures to reduce and
limit their impact on users’ privacy. To foster additional research
on these sounds that mislead machine kearning models, we publish
a dutuset of more than 1000 verified triggers us a research artifact.

I. INTRODUCTION

In the past few years, we have observed a huge growth
in the popularity of voice assistants, especially in the form of
smart speakers. All major technology companies, among them
Amazon, Baidu, Google, Apple, and Xinomi, have developed
an assistant. Amazon is among the most popular brands on the
market: the company reported in 2019 that it had sold more
than 100 mallion devices with Alexa on board; there were more
than 150 products that support this voice assistant (¢, g., smart
speakers, soundbars, headphones, ctc.) [8]. Especially smart
speakers are on thetr way of becoming a pervasive technology,
with several secunity and pavacy implications due to the way
these devices operate: they continuously analyze every sound
in their environment in an attempt to recognize a so-called
wake word such as “Alexa” “Echo,” "Hey Siri." or “Xilio di
x:ho di” Only if & wake word 15 detected, the device starts to
record the sound and uploxds it 10 & remote server, where it
is trunscribed, and the detected word sequence is interpreted
& a command. This mode of operation is mainly used due
pavacy concers, & the recording of all (potentially private)
communication and processing this data in the cloud would
be too invasive, Furthermore, the limited computing power
and storage on the speaker prohibits a full analysis on the

device iself. Hence, the recorded sound is seat to the cloud
for analysis once a wake word 1s detected.

Unfortunately, the precise sound detection of wake words
is a challenging task with a typical trade-off between usability
and security: manufacturers aim for a low false acceptance
and false rejection rate [S0], which enables a certain wiggle
room for an adversary. As a result, it happens that these smart
speaker igger even if the wake word has not been uttered.
Furst explorative work on the coafusion of voice-driven user
input has been done by Vaidya et al. [60]. In their 2015 paper,
the authors explain how Google's voice assistant, running on a
smartphone misinterprets “cocaine noodles” & “OK Google”
and describe a way 1o exploit this behavior to execute unautho-
nzed commands such as sending a text, calling a number, or
opening a website, Later, Kumar et al. [35] presented an attack,
called skill squatring, that leverages transcription errors of a
list of samulas-sounding woeds 1o exasting Alexa skills. Thear
attack exploits the imperfect transcription of the words by the
Amazon API and routes users to malicious skills with similar-
sounding names, A similar artack, in which the adversary
exploits the way a skill is invoked, has been described by
Zhang et al. [66).

Such research results utilize instances of what we call an
accidental trigger: a sound that a veice assistant mistakes
for its wake word. Privacy-wise, this can be fatal, as it wall
induce the voice assistant to start a recording and stream it
to the cloud. Inadvertent triggering of smart speakers and the
resulting accidentally captured conversations are seen by many
as a privacy threat [12), [18), [40]. When the media reported
m summer 2019 that employees of the manufacturer listen to
voice recordings to transcribe and annotate them, this led 1o an
uproar [16], [62]. As a result, many companics paused these
programss and no longer manually analyze the recordings [20],
(28], 137).

In this paper, we perform a systematic and comprebensive
analysis of accidental triggers to understand and elucidate this
phenomenon i detail. To this end, we propose and imple-
ment an automatex approach for systematically evaluating the
resistance of smart speakers to such accidental triggers, We
base this evaluation on candidate triggers carefully crafied
from a pronouncing dictionary with a novel phonetic distance
measure, as well as on available AV media content and bring it
to bear on a range of current smart speakers. More specifically,
in a first step, we analyze vendor's protection mechanisms such
as cloud-based wake word vernification systems and acoustic
fingerprints, used to limit the impact of accidental tniggers.
We carcfully cvaluate how a diverse set of 11 smart speakers
from 8 manufacturers behaves in a simulated living-room-like
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What happens if we add an active
attacker to this scenario?
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ROOM IMPULSE RESPONSE (RIR)
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Audio Adversarial Examples
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Adversarial Robustness
Strong adaptive, white-box attacker

Successful at computing adversarial
examples against DOMPTEUR

But attack forced into audible
ranges and clearly perceivable
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Robustness
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And more cool
projects to come ¢4



Speech recognition not robust

Attacks possible both during runtime and
training time

Psychoacoustics effective to force
attacker into audible ranges

ADVERSARY Thank you!




