
Exploring the Potential of
LLMs for Code Deobfuscation

David Beste1[0009−0002−0597−7788]B, Grégoire Menguy2[0000−0002−8776−8770],
Hossein Hajipour1[0000−0001−6911−9390],

Mario Fritz1[0000−0001−8949−9896], Antonio Emanuele Cinà3[0000−0003−3807−6417],
Sébastien Bardin2[0000−0002−6509−3506],

Thorsten Holz1[0000−0002−2783−1264], Thorsten Eisenhofer4[0000−0002−4706−260X],
and Lea Schönherr1[0000−0003−3779−7781]

1 CISPA Helmholtz Center for Information Security
{first.last}@cispa.de

2 Université Paris-Saclay, CEA, List
{first.last}@cea.fr
3 University of Genoa

{first.last}@unige.it
4 BIFOLD & TU Berlin

{first.last}@tu-berlin.de

Abstract. Code obfuscation alters software code to conceal its logic
while retaining functionality, aiding intellectual property protection but
hindering security audits and malware analysis. To address this, auto-
mated deobfuscation techniques have been developed, though existing
approaches remain constrained by limited scope and specificity. Motivated
by these challenges, this paper explores a novel approach for code deob-
fuscation based on Large Language Models (LLMs). First, we investigate
the general capabilities of LLMs in reducing code complexity by choosing
five different source-to-source obfuscation methods. Despite challenges
regarding semantical correctness, our findings indicate that LLMs can
be very effective in this task. Building on this, we fine-tune two versatile
models capable of simplifying code obfuscated through up to seven differ-
ent chained obfuscation transformations while consistently outperforming
deobfuscation based on compiler optimizations and general-purpose LLMs.
Our best model demonstrates an average Halstead metric program length
reduction of 89.21% for our most challenging scenario. Finally, we conduct
a memorization test to assess if performance stems from memorized code
rather than true deobfuscation capabilities, which our models pass.

1 Introduction

Code obfuscation [8, 9] refers to various methods to disguise a program’s func-
tionality, making its source or machine code harder for a human analyst to
comprehend. Malicious actors often use obfuscation techniques to complicate
malware analysis, thus impeding the development of effective detection methods



2 D. Beste et al.

and countermeasures [21, 35]. For these reasons, deobfuscation methods have
been developed to recover the original structure of the code. These methods
use sophisticated approaches such as advanced static analysis [31,35], dynamic
analysis [37,41], and, more recently, program synthesis [4, 18,29]. Despite their
potential, the effectiveness of these techniques often encounters significant limi-
tations. Many focus on specific obfuscation strategies, such as mixed Boolean
arithmetic (MBA) [31,32] or opaque predicates [3, 30], which limits their applica-
bility to broader obfuscation scenarios. Furthermore, although program synthesis
offers a promising approach, it is so far only suitable for deobfuscating small
and simple pieces of code without complex structures [4, 29]. This limitation
significantly diminishes its practical utility for broad-scale deobfuscation tasks
and emphasizes the need for further progress in this area.

In this paper, we explore the capabilities of LLMs in code deobfuscation tasks.
LLMs have demonstrated remarkable abilities in generating code, as evidenced by
applications such as writing code from natural language descriptions [33], code
summarization [39], and automatic code repair [14, 22]. Based on these advances,
we investigate whether LLMs provide enough inherent code comprehension to
integrate specialized knowledge with broad applicability, which is essential for
deobfuscating complex code. This focus allows us to address two main challenges:

First, the LLM needs to identify the transformation(s) applied to the code to
remove the obfuscation structures entirely. Second, the LLM needs to develop a
nuanced understanding of the context in which the obfuscated code operates so
that it can reconstruct the code without breaking functionality.

To better understand the potential of LLMs, our first step involves evaluating
the foundational capabilities of recent code models, including DeepSeek Coder [16],
Code Llama [33], and GPT-4 [1], for this task. To this end, we consider a variety of
source-to-source obfuscation techniques such as control-flow flattening [38], opaque
predicates [8], and MBA encoding [4] as representative examples of different code
obfuscation strategies. In total, we select five different transformation methods
to construct a dataset that contains pairs of original and obfuscated codes. The
data set contains 30,000 training samples and 2,400 test samples for the single
transformation and multi-chain deobfuscation scenarios.

By controlling the construction of the dataset, we can generate code pairs
that undergo one or more transformations. Using this constructed dataset, we
conduct a series of systematic experiments to evaluate the capabilities of LLMs
in deobfuscating codes obfuscated by different sets of transformations. In our
study, we examine how base models and instruction-tuned code models perform
in this task, both in zero-shot scenarios and through fine-tuning. Our key metrics
are the complexity reduction of the code and the preservation of its functionality.

Main findings. Our experiments result in the following observations:

– While LLMs can effectively reduce the complexity of obfuscated codes, they
sometimes break the functionality of the code.

– Fine-tuned models show significant improvements over general-purpose LLMs
such as GPT-4 and existing compiler optimizations, which we used as a
baseline to compare against.



Exploring the Potential of LLMs for Code Deobfuscation 3

– The models exhibited very good syntactical correctness even in our most
complex scenarios.

– In fact, in the most demanding scenarios, our best model achieved an average
program length reduction of 89.21% according to the Halstead metric [20].

– With increasing complexity of the obfuscations, the semantical correctness
declines.

– After performing a memorization test, we find that the LLMs do not make
use of memorized samples but rather truly deobfuscate the code.

Our research highlights the potential of LLMs to complement existing deob-
fuscation methods.

Contribution. In summary, we systematically analyze the potential of LLMs
for code deobfuscation and compare general-purpose models, specialized code
models, and instruction-tuned models. This analysis not only highlights the
strengths of LLMs in tackling code obfuscation, but it also shows their current
limitations, such as generating semantically incorrect code. We build the first
scalable dataset for training and evaluating the performance of LLMs for the
deobfuscation task that can be used with arbitrary C programs. Our code is
available at https://github.com/DavidBeste/llm-code-deobfuscation.

2 Obfuscation of Code

Obfuscation refers to the process of making software code difficult to understand.
To protect a program P from reverse engineering, obfuscation translates it into a
program P ′, which is harder to analyze but semantically equal. Figure 1 shows an
example where three transformations (control-flow flattening, arithmetic encoding,
and argument randomization) have been applied to obfuscate the code.

Formally, we define this obfuscation transformation T as a function

T : P 7→ P ′ , (1)

which maps a program P into an obfuscated version P ′ subjected to se-
mantic constraints. The obfuscator is assumed to be equipped with a set of
such transformations T , and obfuscation is done for a chain of transformations
[T1, . . . , Tk] ∈ T k by iteratively applying the transformations to the program,
i.e.,

P ′ = (T1 ◦ ... ◦ Tk)(P ) . (2)

The result P ′ then represents the obfuscated program. In this work, we focus on
the Tigress obfuscation toolkit [7], which represents a state-of-the-art C code
obfuscator and includes a wide range of configurable obfuscation schemes [9, 25,
26,35], making it well suited for scientific investigations.

Code Deobfuscation. Similarly, efforts have been devoted to deobfuscate
programs in an automated way. Approaches that rely on static analysis [31,32,35],

https://github.com/DavidBeste/llm-code-deobfuscation


4 D. Beste et al.

1 __inline static void strtoupper(char *s) {
2 char *c;
3 c = s;
4 while (*c) {
5 if ((int )*c >= 97) {
6 if ((int )*c <= 122) {
7 *c = (char )(((int )*c - 97) + 65);
8 }
9 }

10 c ++;
11 }
12 return;
13 }

(a) Original Code

1 void _xa(char *_k0, long _k1) {
2 char *_k2 ;
3 unsigned long _k3 ;
4 int _k4 ;
5 _k3 = 1UL;
6 while (1) {
7 switch (_k3) {
8 case 4UL: ;
9 if (97 <= (int )*_k2) {

10 _k3 = 0UL;
11 } else {
12 _k3 = 3UL;
13 }
14 break;
15 [...]

(b) Obfuscated Code

Fig. 1: Example Code. Figure 1b presents an obfuscated version of the program
shown in Figure 1a. This example is truncated for brevity; the full code consists
of 55 lines.

1 void _xa(char *_k0) {
2 char *_k2;
3 _k2 = _k0;
4 while (*_k2) {
5 if ((int )*_k2 >= 97) {
6 if ((int )*_k2 <= 122) {
7 *_k2 = (char )(((int )*_k2 - 97) + 65);
8 }
9 }

10 _k2 ++;
11 }
12 return;
13 }

Fig. 2: Deobfuscated code. Code recovered from the obfuscated code shown in
Figure 1b, extracted with our approach

dynamic analysis [11, 37, 41] or program synthesis [4, 29] have been shown to
be very efficient. These approaches aim to be obfuscator-independent and see
each obfuscation as a general problem to solve. In exchange, we face two main
challenges: (1) We must know which family of obfuscation has been used to
leverage the corresponding deobfuscation method; (2) We must know on which
scope the deobfuscation should be applied to get the best results.

Transformations. We consider five different transformation techniques. This
selection aims to include transformations altering different aspects of the program
code, such as complicating the control flow or increasing the number of operations
in the program. Furthermore, the Tigress toolkit makes several recommendations
for obfuscation chains [6]. From these, we additionally include all transformations
from the first “recipe”. To increase diversity, we vary the parameters for the chosen
transformations using the recommendations from the Tigress documentation. In
the following, we explain the five chosen transformations in more detail.



Exploring the Potential of LLMs for Code Deobfuscation 5

Encode arithmetic. Mixed-Boolean-Arithmetic (MBA) translates an easy-to-
understand arithmetic expression into a more obscure equivalent expression, by
manipulating both arithmetic and boolean operators [13]. The following example
shows a basic MBA encoding from the Tigress [7] documentation, replacing the
+ operator with a more complex structure:

x+ y −→ (x⊕ y) + 2× (x ∧ y). (3)

Encode branches. This transformation disguises static jumps as return instructions
to fool disassembly tools into going to the next return address instead of following
the jump target [25]. Again, a manual analysis of the control flow is cumbersome
and requires a great deal of effort for an analyst.

Control-flow flattening. The flattening protection [9, Chap 4.3.2] breaks the
control-flow graph (CFG) of the code to create a loop to execute that will be
dispatched over different blocks. As a result, instead of seeing an informative
CFG (with branches and loops), a reverse engineer will only see a code structure
that must be simplified to understand the real behavior of the code.

Opaque predicates. The opaque predicate transformation [10] aims to break the
CFG of the obfuscated code. To do so, it adds conditionals, always evaluating to
true or false, to artificially increase the size of the CFG, thus obscuring which
parts of the code are reachable.

Randomize arguments. This technique randomizes the order of function arguments
and adds bogus (i.e., new and semantically useless) arguments [5] requiring a
reverse engineer to track them and analyze their purpose.

3 LLM-supported Deobfuscation

We are now set to examine how LLMs can enhance the understanding and
simplification of complex patterns in obfuscated code, potentially enhancing
traditional deobfuscation methods. We focus on a scenario where, given an
obfuscated program, we aim to retrieve a simpler and semantically equivalent
version for further analysis.

Challenges. One of the main obstacles in using current deobfuscation methods
is that many state-of-the-art techniques are tailored to specific transformations.
To properly deobfuscate a program, it is necessary to first identify the specific
obfuscation methods used in order to choose the right deobfuscation tool. Take,
for instance, the obfuscated code shown in Figure 1b: The original 13-line code
from Figure 1a has been transformed to 55 lines with a complex control flow. To
deobfuscate this, we must first identify the obfuscations applied—in this case,
control-flow flattening, arithmetic encoding, and argument randomization—and
then apply the right tools to reverse these changes. This analysis requires expertise
and can be error-prone, particularly when the code undergoes multiple chained
transformations. Furthermore, deobfuscation tools often require to specify which



6 D. Beste et al.

P' P
1

2
3

Obfuscated 
program

Deobfuscated 
programLLM

// Obfuscated

// Deobfuscated

// Obfuscated

// Deobfuscated

Fig. 3: LLM-based code deobfuscation. We consider the LLM (Step ❷) as
a generic deobfuscator, receiving the obfuscated code embedding in its input
(Step ❶). The model is trained to extend this input sequence with the deobfuscated
code in its output. From the response, we extract the deobfuscated program
(Step ❸). The actual format depends on the type of model. Shown here is a C
comment style delimiter we use for pure code models.

part of the code to deobfuscate. For example, tools designed to simplify mixed
boolean arithmetic expressions [26] demand the specific obfuscated expression as
input. While some methods can process the entire code [34,41], they do not scale
well with larger code bases. This limitation highlights the need for more effective
deobfuscation tools that can handle code efficiently.

LLMs for Deobfuscation. We hypothesize that LLMs can help address these
challenges, as they have demonstrated remarkable performance in various code
tasks [14,17,19,22]. Rather than developing specialized tools for each transfor-
mation, we explore the use of LLMs that process the entire obfuscated code in
their input and are trained to output the deobfuscated code in their response.
The high-level idea is illustrated in Figure 3. When, for example, the obfuscated
function from Figure 1b is fed to the LLM, the model returns a simplified version
(see Figure 2) that closely resembles the original code.

Models. The effectiveness of this approach naturally relies on the selected model.
On the one hand, we consider a large instruction-tuned model like GPT-4 and
design a prompt to instruct the model for deobfuscation. Although the model is
not a dedicated code model but rather general-purpose, it performs surprisingly
well in the code domain [1]. On the other hand, previous research indicates that
models fine-tuned for code-related tasks can substantially outperform generalist
models while being significantly smaller [16, 33]. In light of this, we additionally
explore the use of specialized coding models, namely Code Llama [33] and
DeepSeek Coder [16]. We consider both the direct use of the pre-trained models
and instruction-tuned versions. Instruction-tuning a code model has been shown
to further enhance its coding performance across various benchmarks [16,33]. We
fine-tune the code models using the dataset depicted in Figure 4 introduced next
in Section 3.1. Table 1 summarizes the selected models.

Prompt format. We format samples based on the LLMs’ training: We use C-style
comments for pure code models as shown in Figure 3 and conversational style
for instruction-tuned models.



Exploring the Potential of LLMs for Code Deobfuscation 7

Table 1: LLMs considered in the study

Name Size Open Instruction Coding
Access Tuned Specialist

DeepSeek Coder [16] 6.7B ✓ ✓ ✓

Code Llama [33] 7B ✓ ✗ ✓

GPT-4 [1] n/a ✗ ✓ ✗

3.1 Dataset and Training

For fine-tuning and evaluation, we require a dataset that meets several criteria.
First, we need a diverse and comprehensive collection of code, preferably from real-
world sources. Second, we need a way to verify the semantics of the deobfuscated
code to compare the functionality between the original and the deobfuscated
code and to measure the models’ understanding. Furthermore, to practically
instantiate the dataset, we focus on a function granularity, i.e., the program P is
a single source code function.

Dataset selection. Based on the aforementioned requirements, we use the
ExeBench dataset [2], a comprehensive collection of real-world C code crawled
from GitHub specifically designed for machine learning purposes. The dataset is
representative of real-world code based on different software metrics and provides
input/output (I/O) samples for each C code, facilitating the evaluation of the
semantical correctness. We use the train-real-compilable subset for training
and the test-real subset for evaluation since these both are the closest to
real-world code and allow for compilation, which is necessary for our checks later.
These subsets comprise 885,074 and 2,134 individual functions.

Pre-processing. We pre-process the dataset and exclude main functions and
functions that contain no arithmetic operations or branches, since such samples
might lead to trivial obfuscations when applying certain transformations (e.g,
encoding of arithmetic and flattening of code). In addition, we filter out functions
with duplicate names to minimize the inclusion of semantically similar functions,
which results in a more diverse training set. We then canonicalize the original
code to reduce the variance in coding style between the original and obfuscated
samples, e.g., we replace ternary operators with if-else statements. Finally, we
randomize all identifier names to prevent the LLM from inferring code structures
from descriptive identifier names.

Dataset Generation. The generation process is illustrated in Figure 4. In
the first step ❶, we create differently obfuscated versions of programs Pi with
i = 1, . . . , N where N is defined by the number of samples to incorporate. There-
fore, we construct M chains Tj = [T1, . . . , TL] with length L ≤ Lmax where Lmax

defines the maximum chain length. Transformations Tl’ with l = 1, . . . , L are sam-
pled uniformly from the set of transformations T . For each program Pi and chain
Tj , we create an obfuscated program P ′

i,j . To ensure a diverse set, we randomize



8 D. Beste et al.

Obfuscator
chains T

Obfuscated
Programs P'

1

Programs Pi
i,j

j

2
Prompt

generation

// Obfuscated // Deobfuscated

Fig. 4: Dataset generation. The dataset is created in two steps. The input
for the first step ❶ is a set of programs, which are transformed into obfuscated
programs using several obfuscator chains. In the second step ❷, we subsequently
create data samples for the fine-tuning, consisting of pairs of the obfuscated
programs and their unmodified counterparts.

the initialization seed for each chain and the parameters for the transformations
which leads to N ·M obfuscated programs (P ′

1,1, . . . , P
′
1,M , . . . , P ′

N,1, . . . , P
′
N,M ).

Following this, in step ❷, we pair each obfuscated program with its corresponding
original version, i.e., (Pn, P

′
n,m). The resulting pairs serve as the unique samples.

3.2 Metrics

To assess the models’ performance, we consider two aspects. We evaluate cor-
rectness and measure the models’ effectiveness in recovering a code close to the
original one from the obfuscated version.

Correctness. We distinguish between semantical and syntactical correctness.

Syntactical Correctness. We assess syntactical correctness using the executable
wrappers from ExeBench and check for any errors during compilation. Since the
wrappers are written in C++, we use the g++ compiler for this.

Semantical Correctness. While checking for syntactical correctness is trivial using
a compiler, semantical correctness is more challenging. We use the I/O samples
from the Exebench dataset to approximate the program’s functional correctness.
We compare the behavior of the deobfuscated program to its obfuscated version.
If the output is the same, we conclude that the program is semantically correct;
otherwise, it is considered incorrect. We do not expect significant gains from
approaches like differential testing and symbolic execution since the I/O samples
were crafted specifically for correctness testing.

Deobfuscation Performance. To evaluate deobfuscation performance, we need
a metric that effectively reflects the model’s ability to reduce code complexity.



Exploring the Potential of LLMs for Code Deobfuscation 9

This metric should consider the complexity of the original, obfuscated, and
deobfuscated code in a single value. Therefore, we propose the following metric:

PDeobf = 1− CDeobf − COrig

CObf − COrig
(4)

Intuitively, the closer the deobfuscated code is to the original, the closer
the score approaches 1. Conversely, the closer the deobfuscated code is to the
obfuscated sample, the closer the score approaches 0. Scores larger than 1 imply
that the model made the code less complex than the original version, indicating
it found a more compact representation. Scores less than 0 imply that the code
returned by the model is more complex than the obfuscated version, indicating a
failure in deobfuscation.

To instantiate the complexity function C, we could use common code metrics
to assess the complexity of program code, such as cyclomatic complexity [28] as
well as the Halstead metrics [20]. Katzmarski and Koschke empirically evaluated
that the Halstead metrics correlate with the programmer’s perception of code
complexity [23] and, therefore, are suitable for measuring performance in the
deobfuscation task. For our evaluation, we focus on the Halstead program length
since it can capture changes from all five transformations we chose.

4 Experimental Evaluation

We now present our empirical evaluation of the deobfuscation capabilities of
large language models. All used LLMs models have been trained to manipulate
C code efficiently. Hence, considering the C-level deobfuscation tasks enables
focusing on the deobfuscation capabilities of LLMs per se. Moreover, in practice,
an approximation of the C code can be retrieved from the binary through
decompilation [27]. We split this investigation into three main parts.

– First, we analyze the code that has been obfuscated with a single transforma-
tion. This will help us infer the general capabilities of the considered LLMs
in a very controlled scenario.

– Second, we move to a more complex setting and consider chains of transforma-
tions. We start with an experiment where the LLMs are trained on multiple
obfuscation techniques simultaneously. Building on that, we also train and
evaluate models on data where multiple transformations are applied on a
single sample. Here, we target obfuscation chains of up to five transformations
for training and up to seven for evaluation, which will allow us to learn about
potential limits of deobfuscation with LLMs.

– Finally, we seek to determine if the observed performance of the language
models might be due to the models detecting and recalling code memorized
during training.

To summarize, our investigations revolve around three main research questions:



10 D. Beste et al.

Encode
Arithmetic

Encode
Branches

Flatten Opaque
Predicates

Randomize
Arguments

Transformations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
D
e
o
b
f

DeepSeek Coder

Code Llama

GPT-4

Clang

Fig. 5: Complexity reduction. We measure the average deobfuscation scores
PDeobf for the five transformations according to the formula introduced earlier
for our fine-tuned models and GPT-4. For encode branches, Clang fails to produce
semantically correct samples, which is why we only compare the three other
models in this case.

RQ1 What are the general capabilities of LLMs in deobfuscating state-of-the-art
code obfuscation transformations?

RQ2 How does the model performance evolve when chaining multiple transfor-
mations together?

RQ3 Do models use memorized code during obfuscation?

All experiments are performed on a server equipped with an A100 GPU with
40 GB of VRAM.

4.1 Single Transformations

For our first experiment, we examine how the language models can handle code
obfuscated by each of the five transformation techniques individually. In this
controlled scenario we can compare the LLMs’ code deobfuscation capabilities
grouped by different transformation types.

Setup. For the fine-tuning set, we sample 3,000 functions from the train-real-
compilable split of the ExeBench dataset [2]. For each function, we create one
obfuscated version for each transformation, resulting in a dataset of 5× 3, 000 =
15, 000 samples in total. From these samples, we create pairs of obfuscated and
original code as explained in Section 3 and randomize all identifier names. For the
evaluation dataset, we sample 200 functions from the test-real split and apply
each of our five transformations to each sample, resulting in a total evaluation
dataset of 1, 000 samples. To evaluate the correctness of the LLMs’ outputs, we
use the executable wrappers from ExeBench as our test harness.

For each transformation, we fine-tune a model for both DeepSeek Coder and
Code Llama. Additionally, we evaluate the performance of each transformation



Exploring the Potential of LLMs for Code Deobfuscation 11

using GPT-4. To provide a broader context for the performance of these models,
we compare their results against compiler optimization techniques. Specifically,
we consider Clang [24], which was shown to be surprisingly effective for deobfus-
cation [34]. We therefore convert the obfuscated code into Clang’s intermediate
representation. We then evaluate it across all optimization levels (-O0, -O1,
-O2, and -O3), selecting the best version based on the complexity metric. This
step is necessary because different optimization levels balance time and memory
differently, meaning the most optimized code is not always the simplest. The
complexity metric is computed directly on the intermediate representation.

Results. Figure 5 presents the average deobfuscation scores PDeobf together
with the standard deviation, considering only samples that were successfully
deobfuscated both syntactically and semantically. We observe that both code
models show strong performance, with neither consistently outperforming the
other across all transformations. GPT-4, on the other hand, is significantly out-
performed by the code models across all transformations, with opaque predicates
and randomize arguments exhibiting the highest difference and encode arithmetic
the lowest. Clang is consistently outperformed by the fine-tuned models except
for encode arithmetic and randomize arguments, where Clang is on par with the
fine-tuned LLMs. This indicates that Clang has strengths at reducing complex
arithmetic expressions and removing bogus arguments from randomize arguments,
where the latter is trivial to remove for a compiler. When comparing Clang with
GPT-4, we find that Clang outperforms GPT-4 across all transformations except
encode branches, where a direct comparison is not possible as discussed next.

Table 2 shows the syntactical and semantical correctness. Similar to deobfus-
cation performance, there is no clear winner. Both fine-tuned models achieve high
syntactical correctness and, to a lower degree, also semantical correctness (be-
tween 50 and 94.5%). Interestingly, GPT-4 outperforms the fine-tuned models in
terms of semantical correctness. This suggests that larger models such as GPT-4
may possess stronger general code reasoning capabilities. As expected, Clang gen-
erally outperforms all models, with the exception of encode branches, where it fails
to maintain semantical correctness in nearly all cases. When manually inspecting
these cases, it appears that Tigress introduces subtle undefined behaviors, which
Clang exploits to perform aggressive, yet incorrect, optimizations.

Finally, we compare the fine-tuned code models with their unmodified base
models. DeepSeek Coder struggles with correctness, with only 21.60 % being
syntactically and 16.10 % syntactically correct on average. Code Llama, on
the other hand, shows better correctness, with 93.50 % being syntactically and
92.20 % semantically correct on average. However, it only achieves an average
complexity reduction of 0.001.



12 D. Beste et al.

Table 2: Correctness rates for the different models by transformation
type. We report semantical and syntactical correctness. For encode branches,
the set of joint semantically correct samples is 0 when Clang is included, and
thus we only compare the three other models in this case.

Correctness DeepSeek Coder Code Llama GPT-4 Clang

Encode Arithmetic Syntactical 100.00% 100.00 % 92.00% 100.00%
Semantical 69.50% 66.00% 77.50 % 98.00%

Encode Branches Syntactical 97.50% 91.50% 97.00% 100.00 %
Semantical 62.50% 57.50% 79.00 % 0.50%

Flatten Syntactical 98.50% 96.50 % 97.50% 100.00 %
Semantical 54.0% 50.00% 76.50% 94.00%

Opaque Predicates Syntactical 100.00% 99.50% 92.00% 100.00%
Semantical 94.50% 93.50% 89.50 % 95.00%

Randomize Arguments Syntactical 96.50% 97.00 % 100.00% 100.00%
Semantical 93.00% 96.00% 98.50 % 98.50%

Conclusion: Models fine-tuned on specific transformations demonstrate
strong deobfuscation performance. They can outperform large generalist
models in reducing complexity and achieving overall correctness, but large
generalist models can have some advantages in maintaining semantical
correctness. LLMs outperform compiler optimizations for most obfuscation
transformations. Surprisingly, considering syntactical correctness, LLMs get
close to compilers — which never fail. However, their primary challenge is
to ensure semantical correctness.

4.2 Multiple transformations

So far, we have been focusing on whether the models can learn individual
transformations during fine-tuning. Building upon this, we want to investigate if
the models are also capable of learning multiple transformations simultaneously.

Setup. To do this, we fine-tune the two code models on the entire dataset consisting
of multiple transformations with 15, 000 samples in total. This allows us to explore
if the capacity of our chosen model sizes is sufficient to exhibit enough in-depth
code understanding capabilities to handle multiple transformations of different
natures and various structural changes at the same time.

Results. We find that both versions of the fine-tuned models maintain strong
deobfuscation performance for all the transformations, even when fine-tuned on
multiple transformations at once. However, we notice a drop in performance
of around 13% for randomized arguments for both models. This indicates that
the models might have a tendency to fail to recognize specific transformations



Exploring the Potential of LLMs for Code Deobfuscation 13

1 2 3 4 5 6 7

Chain Length

0.0

0.5

1.0

1.5

2.0

P
D
e
o
b
f

DeepSeek Coder

Code Llama

GPT-4

Fig. 6: Average deobfuscation scores PDeobf for chained transformations of differ-
ent lengths

when trained on multiple transformations at the same time. Also, we observe
that for the models trained on all transformations, the correctness for encode
branches increases for both models. We suspect that this is a result of the LLMs’
improved general understanding of the deobfuscation task since they had seen
more data during training. On the other hand, for Code Llama, specifically,
the syntactical correctness for opaque predicates decreases when fine-tuned on
multiple transformations. A possible explanation for this behavior is that the
model is confusing different transformations. At the same time, the semantical
correctness for encode arithmetic increases for Code Llama, indicating no clear
trend toward improvement or degradation

Scaling chains of transformations. Next, we want to scale up the experi-
ments to better understand the potential failure points of LLMs regarding code
understanding and systematically measure how much the models maintain their
performance with increasing complexity.

Setup. For this purpose, we build a training data set with transformations of
chain lengths from one to five, i.e., Lmax = 5, consisting of 3,000 samples for each
chain size, resulting in a dataset of 15,000 samples in total. We allow the same
transformation to be chosen multiple times in a chain, which enables a diverse
data set with 55 = 3125 possible transformation chains. As before, we randomize
the parameters of each transformation according to the recommendations in
the Tigress documentation. For testing, we consider transformations from chain
lengths one to seven, i.e., Lmax = 7. With chain lengths six and seven, we evaluate
the performance of out-of-training samples.

Results. Figure 6 shows the code deobfuscation performance PDeobf . In three
cases, specifically in the chained transformation scenario, we find that Code
Llama renamed the function for deobfuscation, although not trained to do so
for our models, and GPT-4 explicitly instructed not to do so. We exclude these
samples from the evaluation since our pipeline relies on identical function names
for obfuscated and deobfuscated samples. Renamed functions could result in



14 D. Beste et al.

1 2 3 4 5 6 7

Chain Length

0

20

40

60

80

100
C

o
rr

ec
tn

es
s

(%
)

DeepSeek Coder

Syntactical Correctness

Semantical Correctness

1 2 3 4 5 6 7

Chain Length

0

20

40

60

80

100

Code Llama

Syntactical Correctness

Semantical Correctness

1 2 3 4 5 6 7

Chain Length

0

20

40

60

80

100

GPT-4

Syntactical Correctness

Semantical Correctness

Fig. 7: Correctness rate for chained transformations

erroneously computing the metrics over an auxiliary function in the code file for
the deobfuscated sample, resulting in nonsensical scores.

We find that DeepSeek Coder and Code Llama maintain stable deobfuscation
performance, even for chain lengths six and seven that were not part of the
fine-tuning. On the other hand, the deobfuscation performance of GPT-4 starts
lower and declines slightly with increasing chain lengths, and it is significantly
outperformed by both code models for all possible chain lengths.

The correctness rates are reported in Figure 7. For syntactical correctness,
the rates for the code models vary with increasing chain length but still exhibit
high correctness rates. On the other hand, the syntactical correctness rate for
GPT-4 steadily declines. For semantical correctness, we see that GPT-4 performs
the best, followed by DeepSeek Coder. GPT-4 maintains a higher semantical
correctness rate for larger chain sizes. This again supports our suspicion that its
larger model size can attenuate semantical correctness problems of LLMs.

Conclusion: The fine-tuned models consistently maintain stable deobfus-
cation performance across all evaluated chain lengths, including lengths six
and seven, which were not included in the training data. In contrast, the
performance of GPT-4 decreases significantly as the chain length increases.

4.3 Memorization

The LLMs we consider are trained on large amounts of text and code that is pub-
licly available online [1,16,33]. This inevitably raises the question of whether the
training data contained tigress-obfuscated code, which can be found on platforms
such as Stack Overflow. As a result, the model’s deobfuscation abilities could stem
from either memorization of the correct outputs or a genuine understanding of
the code’s structure and semantics. To investigate this, we propose the following
experiment: We identify and alter constant values within a program. If the model
recovers the original, unmodified constant values during deobfuscation, this would
strongly suggest memorization. On the other hand, correctly recovered samples
would indicate more genuine understanding capabilities.



Exploring the Potential of LLMs for Code Deobfuscation 15

Setup. We use samples from the previous experiment that were semantically
correct and contain at least one constant, excluding constants in array declarations
and references from the randomization procedure, as these likely cause the
program to malfunction. For the remaining samples, we randomize all constants
in the program. We exclude programs that crash or time out after ten milliseconds.
The latter occurs if the randomization of constants causes a slow or infinite loop.
Lastly, we update the corresponding input and output samples using the new
program for reference. In total, we collect 257 programs for DeepSeek Coder, 215
samples for Code Llama, and 357 for GPT-4.

Results. We observe that the semantical correctness rate ranges between 75 and
99% across the five transformations and two models. If a deobfuscated sample
is semantically correct, it is very likely to have recovered the correct constants.
Therefore, we focus on the incorrect samples and manually review these.

During this analysis, we found only one sample affected by memorized con-
stants out of the 257 for DeepSeek Coder and the 255 for Code Llama. However,
we did observe that models were frequently confused by additional arithmetic
complexity, as introduced by encode arithmetic, which was especially pronounced
for DeepSeek Coder. Also, operators such as ≤ and ̸= were frequently changed.
Furthermore, in several instances, the models attempted to correct nonsensical
code, such as loops that are never executed or mutually exclusive logical com-
pound conditions in if-statements, which, according to the updated I/O samples,
resulted in semantically incorrect code. For GPT-4, we noticed a lower average
semantical correctness over all transformations, with 83 % for GPT-4 vs. 88 % for
DeepSeek Coder and 93.48 % for Code Llama. A possible explanation is that due
to the lack of training in removing specific transformations, GPT-4 might remove
only part of the obfuscated code and break semantics in the process as compared
to the other two. Code Llama’s better score might indicate a lower tendency to
try to “correct” implausible statements and thus break semantical correctness.

Conclusion: We only observed minor indications of the LLMs using memo-
rized constant code snippets for deobfuscation, which is a good indication of
the inference ability of the models for deobfuscation.

5 Discussion

This paper represents an initial investigation of the capabilities of LLMs for
deobfuscation. In the following, we discuss our findings and potential directions
for future work in this area.

Our semantical correctness check. For checking the semantical correctness,
we rely on I/O sampling and, more specifically, the rich IO samples from the
ExeBench dataset [2], which can still, in theory, miss corner cases. We did not
observe failed correctness checks during our experiments. As we have full access
to both the original and obfuscated samples, this check could easily be extended



16 D. Beste et al.

through standard techniques such as differential testing or symbolic execution.
However, we do not expect a significant difference in results.

Semantical incorrectness in practice. Our study shows that, at the moment,
LLMs can sometimes produce semantically incorrect results. While this is not an
ideal situation and may clearly hinder some applications, these results can still
be useful in some scenarios. Similarly, decompilers are known to not always be
correct [27], but they are often considered useful by practitioners. We apply 8-bit
quantization during fine-tuning to improve efficiency, though this can reduce
output quality [12]. Furthermore, our experiments with GPT-4 suggest that larger
models maintain semantical correctness better. Exploring the impact of model
size and model quantization could be a promising direction for future research.

Context size. We use a 6144-token context size to balance program length
with training and inference speed, limiting the size of programs we consider. We
consider compressing the programs into a more compact representation as out
of scope for this work to exclude potential complications that might arise from
compressing larger inputs to fit the context size.

Transformations. We focus on a subset of existing obfuscation methods. Specifi-
cally, obfuscation schemes such as virtual machine-based packing or self-modifying
code are hard to deobfuscate solely with static analysis [11,35]. These types of
obfuscation could be addressed using different approaches, such as dynamic tech-
niques, to recover a dump of the code, which could then be deobfuscated using the
method we presented. Additionally, our approach only includes intra-procedural
obfuscation. Evaluating other obfuscation schemes, as well as inter-procedural
obfuscation, is a promising direction for future work.

About deobfuscation and LLMs. We believe that deobfuscation is a great
application for LLMs for several reasons: (1) Semantical correctness of the
obfuscated and the LLM-simplified code can be automatically checked (at least
partially), allowing for a clear evaluation of the benefit of LLMs as well as
a simple safety net against hallucinations. (2) Generating datasets is easy, as
obfuscators can be naturally turned into example generators. (3) Simplifying
such convoluted codes requires some form of clear understanding of the code. (4)
Highly obfuscated codes combining several layers of protection are less likely to
be part of the initial training dataset, reducing the risk of memorization.

General Applicability. We showed that models trained on multiple transforma-
tions still show high deobfuscation performance. While our experiment showed
an increase in performance for some transformations, it showed a decrease for
others. We expect that with increasing training and model size, the performance
gains will outweigh potential drawbacks due to LLMs confusing different transfor-
mations. This indicates the tendency of LLMs to become universal deobfuscators,
possibly rendering the necessity of dedicated deobfuscation techniques obsolete.

Open questions. While we believe this work already gathered valuable in-
sights regarding the potential of LLMs for code deobfuscation, several important
questions remain, including generalization across different obfuscators and their



Exploring the Potential of LLMs for Code Deobfuscation 17

different versions, other programming languages—particularly machine code or
bytecode—and possible countermeasures. Another direction would be extending
the memorization experiment, for example, finding different representations of
the program and evaluating the representation returned by the LLM.

6 Related Work

In the following, we discuss related work on applications of code LLMs and other
approaches to employing learning-based methods for code deobfuscation.

Large Language Models for Codes. LLMs have advanced various fields,
including natural language processing [1, 12] and programming languages [15, 33].
Feng et al. [15] propose the CodeBERT model that utilizes an encoder-only
architecture with the primary focus on code classification, code retrieval, and
program repair. CodeT5 [40] and CodeT5+ [39] employ an encoder-decoder
architecture with various datasets and objective functions to tackle various code
generation tasks. More recently, LLMs with decoder-only architecture have shown
promising performance in various code generation tasks [16,33].

Machine Learning for Code Deobfuscation. Most deobfuscation algorithms,
like symbolic deobfuscation, target specific obfuscation families. It relies on static
analysis to remove, for example, opaque predicates [3] or to simplify virtual
machines [34]. Closer to our work, neural networks have been used to identify
obfuscated code parts, and the obfuscation used [36]. Our work is more general,
as it performs obfuscation identification and simplification in a row. Hence, both
aspects can benefit from prior knowledge included in our fine-tuned LLM.

7 Conclusion

In this paper, we present an exploration into the use of LLMs for the task of code
deobfuscation by conducting three main experiments. First, we test the LLMs in
a single transformation setting in which our models show strong performance.
On the downside, we find that challenges related to maintaining semantical
correctness persist, indicating areas for future improvement. Second, we consider
a scenario closer to real-world conditions by employing chains of transformations.
As the length of these transformation chains increases, the models’ ability to
produce semantically correct code decreases. However, the models’ deobfuscation
performance remains consistently strong across all considered chain lengths.
Compared to GPT-4, our models maintain higher deobfuscation performance
for longer chains. Finally, we perform a memorization experiment, which all
models successfully pass. As we continue to refine these models and address their
shortcomings in the future, the prospect of developing more robust, scalable, and
versatile deobfuscation tools based on LLMs becomes more tangible and promises
to enhance security efforts in the ever-evolving arms race in software protection.

Acknowledgments. This work was supported by the German Federal Ministry
of Education and Research (BMBF) under the grant AIgenCY (16KIS2012), the



18 D. Beste et al.

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
the project ALISON (492020528), the European Research Council (ERC) under
the consolidator grant MALFOY (101043410), ANR Research under Plan France
2030 with reference ANR-22-PECY-0007 as well as BPI under Plan France 2030
with reference DOS0233319/00.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv
preprint (2023). https://doi.org/10.48550/arXiv.2303.08774

2. Armengol-Estapé, J., Woodruff, J., Brauckmann, A., Magalhães, J.W.d.S., O’Boyle,
M.F.: Exebench: an ml-scale dataset of executable c functions. In: Proceedings
of the 6th ACM SIGPLAN International Symposium on Machine Programming
(MAPS). p. 50–59 (2022). https://doi.org/10.1145/3520312.3534867

3. Bardin, S., David, R., Marion, J.Y.: Backward-bounded dse: Targeting infeasibility
questions on obfuscated codes. In: IEEE Symposium on Security and Privacy (S&P).
pp. 633–651 (2017). https://doi.org/10.1109/SP.2017.36

4. Blazytko, T., Contag, M., Aschermann, C., Holz, T.: Syntia: Synthesizing the
semantics of obfuscated code. In: USENIX Security Symposium. pp. 643–659
(2017), https://dl.acm.org/doi/10.5555/3241189.3241240

5. Collberg, C.: RandomizeArguments — tigress.wtf. https://tigress.wtf/
randomizeArguments.html, Accessed: 30 April 2025

6. Collberg, C.: Recipes — tigress.wtf. https://tigress.wtf/recipes.html, Ac-
cessed: 30 April 2025

7. Collberg, C.: The Tigress C Diversifier/Obfuscator. https://tigress.wtf/index.
html, Accessed: 30 April 2025

8. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations.
Tech. rep., The University of Auckland, New Zealand (1997)

9. Collberg, C.S., Nagra, J.: Surreptitious Software - Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley (2010), https://dl.acm.
org/doi/10.5555/1594894

10. Collberg, C.S., Thomborson, C.D., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: ACM Symposium on Principles of Programming
Languages (POPL). p. 184–196. https://doi.org/10.1145/268946.268962

11. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: A semantics-based approach. In: ACM Conference on Computer and
Communications Security (CCS). p. 275–284 (2011). https://doi.org/https:
//doi.org/10.1145/2046707.2046739

12. Dettmers, T., Lewis, M., Belkada, Y., Zettlemoyer, L.: Llm.int8(): 8-bit matrix mul-
tiplication for transformers at scale. In: Advances in Neural Information Processing
Systems (NeurIPS). pp. 30318–30332 (2022), https://dl.acm.org/doi/10.5555/
3600270.3602468

13. Eyrolles, N., Goubin, L., Videau, M.: Defeating mba-based obfuscation. In: Pro-
ceedings of the 2016 ACM Workshop on Software PROtection. p. 27–38 (2016).
https://doi.org/10.1145/2995306.2995308

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1109/SP.2017.36
https://doi.org/10.1109/SP.2017.36
https://dl.acm.org/doi/10.5555/3241189.3241240
https://tigress.wtf/randomizeArguments.html
https://tigress.wtf/randomizeArguments.html
https://tigress.wtf/recipes.html
https://tigress.wtf/index.html
https://tigress.wtf/index.html
https://dl.acm.org/doi/10.5555/1594894
https://dl.acm.org/doi/10.5555/1594894
https://doi.org/10.1145/268946.268962
https://doi.org/10.1145/268946.268962
https://doi.org/https://doi.org/10.1145/2046707.2046739
https://doi.org/https://doi.org/10.1145/2046707.2046739
https://doi.org/https://doi.org/10.1145/2046707.2046739
https://doi.org/https://doi.org/10.1145/2046707.2046739
https://dl.acm.org/doi/10.5555/3600270.3602468
https://dl.acm.org/doi/10.5555/3600270.3602468
https://doi.org/10.1145/2995306.2995308
https://doi.org/10.1145/2995306.2995308


Exploring the Potential of LLMs for Code Deobfuscation 19

14. Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A., Tan, S.H.: Automated Repair of
Programs from Large Language Models. In: International Conference on Software
Engineering (ICSE). p. 1469–1481 (2023). https://doi.org/10.1109/ICSE48619.
2023.00128

15. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., Zhou, M.: CodeBERT: A pre-trained model for programming and natural
languages. In: Findings of the Association for Computational Linguistics (EMNLP).
pp. 1536–1547 (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.139

16. Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., Chen, G., Bi, X., Wu, Y.,
Li, Y., et al.: Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint (2024). https://doi.org/10.48550/
arXiv.2401.14196

17. Hajipour, H., Hassler, K., Holz, T., Schönherr, L., Fritz, M.: Codelmsec bench-
mark: Systematically evaluating and finding security vulnerabilities in black-box
code language models. In: IEEE Conference on Secure and Trustworthy Machine
Learning (SaTML). pp. 684–709 (2024). https://doi.org/10.1109/SaTML59370.
2024.00040

18. Hajipour, H., Malinowski, M., Fritz, M.: Ireen: Reverse-engineering of black-box
functions via iterative neural program synthesis. In: Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML PKDD). pp. 143–157
(2021). https://doi.org/10.1007/978-3-030-93733-1_10

19. Hajipour, H., Schönherr, L., Holz, T., Fritz, M.: Hexacoder: Secure code generation
via oracle-guided synthetic training data. In: arXiv preprint (2024). https://doi.
org/10.48550/arXiv.2409.06446

20. Halstead, M.H.: Elements of Software Science (Operating and programming systems
series). Elsevier Science Inc. (1977), https://dl.acm.org/doi/10.5555/540137

21. Hammad, M., Garcia, J., Malek, S.: A large-scale empirical study on the effects of
code obfuscations on android apps and anti-malware products. In: International
Conference on Software Engineering (ICSE). p. 421–431 (2018). https://doi.org/
10.1145/3180155.3180228

22. Jiang, N., Liu, K., Lutellier, T., Tan, L.: Impact of code language models on
automated program repair. In: International Conference on Software Engineering
(ICSE). pp. 10 pp.–54 (2023). https://doi.org/10.1109/ICSE48619.2023.00125

23. Katzmarski, B., Koschke, R.: Program complexity metrics and programmer opinions.
In: 20th IEEE International Conference on Program Comprehension (ICPC). pp.
17–26 (2012). https://doi.org/10.1109/ICPC.2012.6240486

24. Lattner, C.: Llvm and clang: Next generation compiler technology. In: The BSD
conference. pp. 1–20 (2008)

25. Linn, C., Debray, S.K.: Obfuscation of executable code to improve resistance to
static disassembly. In: ACM Conference on Computer and Communications Security
(CCS). p. 290–299 (2003). https://doi.org/10.1145/948109.948149

26. Liu, B., Shen, J., Ming, J., Zheng, Q., Li, J., Xu, D.: Mba-blast: Unveiling and
simplifying mixed boolean-arithmetic obfuscation. In: USENIX Security Symposium.
p. 2351–2365 (2021)

27. Liu, Z., Wang, S.: How far we have come: testing decompilation correctness of C
decompilers. In: Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis(ISSTA). p. 475–487 (2020). https://doi.org/
10.1145/3395363.3397370

28. McCabe, T.J.: A complexity measure. TSE pp. 308–320 (1976). https://doi.org/
10.1109/TSE.1976.233837

https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.1109/SaTML59370.2024.00040
https://doi.org/10.1109/SaTML59370.2024.00040
https://doi.org/10.1109/SaTML59370.2024.00040
https://doi.org/10.1109/SaTML59370.2024.00040
https://doi.org/10.1007/978-3-030-93733-1_10
https://doi.org/10.1007/978-3-030-93733-1_10
https://doi.org/10.48550/arXiv.2409.06446
https://doi.org/10.48550/arXiv.2409.06446
https://doi.org/10.48550/arXiv.2409.06446
https://doi.org/10.48550/arXiv.2409.06446
https://dl.acm.org/doi/10.5555/540137
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICPC.2012.6240486
https://doi.org/10.1109/ICPC.2012.6240486
https://doi.org/10.1145/948109.948149
https://doi.org/10.1145/948109.948149
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837


20 D. Beste et al.

29. Menguy, G., Bardin, S., Bonichon, R., Lima, C.d.S.: Search-based Local Black-
box Deobfuscation: Understand, Improve and Mitigate. In: ACM Conference on
Computer and Communications Security (CCS). p. 2513–2525 (2021). https://
doi.org/10.1145/3460120.3485250

30. Ming, J., Xu, D., Wang, L., Wu, D.: Loop: Logic-Oriented Opaque Predicate
Detection in Obfuscated Binary Code. In: ACM Conference on Computer and
Communications Security (CCS). p. 757–768 (2015). https://doi.org/10.1145/
2810103.2813617

31. Reichenwallner, B., Meerwald-Stadler, P.: Efficient deobfuscation of linear mixed
boolean-arithmetic expressions. In: CheckMATE workshop. p. 19–28 (2022). https:
//doi.org/10.1145/3560831.3564256

32. Reichenwallner, B., Meerwald-Stadler, P.: Simplification of general mixed boolean-
arithmetic expressions: GAMBA. In: IEEE European Symposium on Security and
Privacy (EuroS&P) Workshops. pp. 427–438 (2023). https://doi.org/10.1109/
EuroSPW59978.2023.00053

33. Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu, J.,
Remez, T., Rapin, J., et al.: Code llama: Open foundation models for code. arXiv
preprint (2023). https://doi.org/10.48550/arXiv.2308.12950

34. Salwan, J., Bardin, S., Potet, M.: Symbolic deobfuscation: From virtualized
code back to the original. In: Detection of Intrusions and Malware, and Vul-
nerability Assessment (DIMVA). pp. 372–392 (2018). https://doi.org/10.1007/
978-3-319-93411-2_17

35. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.: Protect-
ing software through obfuscation: Can it keep pace with progress in code analysis?
ACM Computing Surveys (CSUR) (2016). https://doi.org/10.1145/2886012

36. Tofighi-Shirazi, R., Asăvoae, I.M., Elbaz-Vincent, P.: Fine-grained static detection
of obfuscation transforms using ensemble-learning and semantic reasoning. In:
Proceedings of the 9th Workshop on Software Security, Protection, and Reverse
Engineering (SSPREW). pp. 1–12 (2019). https://doi.org/10.1145/3371307.
3371313

37. Udupa, S.K., Debray, S.K., Madou, M.: Deobfuscation: Reverse Engineering Obfus-
cated Code. In: 12th Working Conference on Reverse Engineering (WCRE’05). pp.
10 pp.–54 (2005). https://doi.org/10.1109/WCRE.2005.13

38. Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resistance: Obstructing
static analysis of programs. Tech. rep., University of Virginia (2000), https://dl.
acm.org/doi/10.5555/900898

39. Wang, Y., Le, H., Gotmare, A., Bui, N., Li, J., Hoi, S.: Codet5+: Open code
large language models for code understanding and generation. In: Conference on
Empirical Methods in Natural Language Processing (EMNLP). pp. 1069–1088
(2023). https://doi.org/10.18653/v1/2023.emnlp-main.68

40. Wang, Y., Wang, W., Joty, S., Hoi, S.C.: Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. In: Conference
on Empirical Methods in Natural Language Processing (EMNLP). pp. 8696–8708
(2021). https://doi.org/10.18653/v1/2021.emnlp-main.685

41. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: IEEE Symposium on Security and
Privacy (S&P). pp. 674–691 (2015). https://doi.org/10.1109/SP.2015.47

https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/2810103.2813617
https://doi.org/10.1145/2810103.2813617
https://doi.org/10.1145/2810103.2813617
https://doi.org/10.1145/2810103.2813617
https://doi.org/10.1145/3560831.3564256
https://doi.org/10.1145/3560831.3564256
https://doi.org/10.1145/3560831.3564256
https://doi.org/10.1145/3560831.3564256
https://doi.org/10.1109/EuroSPW59978.2023.00053
https://doi.org/10.1109/EuroSPW59978.2023.00053
https://doi.org/10.1109/EuroSPW59978.2023.00053
https://doi.org/10.1109/EuroSPW59978.2023.00053
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1145/2886012
https://doi.org/10.1145/2886012
https://doi.org/10.1145/3371307.3371313
https://doi.org/10.1145/3371307.3371313
https://doi.org/10.1145/3371307.3371313
https://doi.org/10.1145/3371307.3371313
https://doi.org/10.1109/WCRE.2005.13
https://doi.org/10.1109/WCRE.2005.13
https://dl.acm.org/doi/10.5555/900898
https://dl.acm.org/doi/10.5555/900898
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1109/SP.2015.47

	Exploring the Potential of 0.1em LLMs for Code Deobfuscation

