
VENOMAVE: Targeted Poisoning
Against Speech Recognition

Hojjat Aghakhani∗, Lea Schönherr†, Thorsten Eisenhofer‡, Dorothea Kolossa§, Thorsten Holz†,
Christopher Kruegel∗, and Giovanni Vigna∗

∗University of California, Santa Barbara †CISPA Helmholtz Center for Information Security
‡Ruhr University Bochum §Technische Universität Berlin

∗{hojjat, chris, vigna}@cs.ucsb.edu †{schoenherr, holz}@cispa.de ‡thorsten.eisenhofer@rub.de §dorothea.kolossa@tu-berlin.de

Abstract—Despite remarkable improvements, automatic speech
recognition is susceptible to adversarial perturbations. Compared
to standard machine learning architectures, these attacks are
significantly more challenging, especially since the inputs to a
speech recognition system are time series that contain both
acoustic and linguistic properties of speech. Extracting all
recognition-relevant information requires more complex pipelines
and an ensemble of specialized components. Consequently, an
attacker needs to consider the entire pipeline.

In this paper, we present VENOMAVE, the first training-
time poisoning attack against speech recognition. Similar to the
pre-dominantly studied evasion attacks, we pursue the same
goal: leading the system to an incorrect, and attacker-chosen
transcription of a target audio waveform. In contrast to evasion
attacks, however, we assume that the attacker can only manipulate
a small part of the training data without altering the target
audio waveform at run time. We evaluate our attack on two
datasets: TIDIGITS and Speech Commands. When poisoning less
than 0.17 % of the dataset, VENOMAVE achieves attack success
rates of over 80.0 %, without access to the victim’s network
architecture or hyperparameters. In a more realistic scenario,
when the target audio waveform is played over the air in different
rooms, VENOMAVE maintains a success rate of up to 73.3 %.
Finally, VENOMAVE achieves an attack transferability rate of
36.4 % between two different model architectures.

Index Terms—Data Poisoning, Automatic Speech Recognition

I. INTRODUCTION

Digital voice assistants are ubiquitous, whether at our homes,
in our cars, or on our smartphones. Forecasts predict that
by 2024, the number of digital voice assistants will surpass
the world’s population with more than 8 billion devices [45].
While there is a constant effort in improving their built-in
Automatic Speech Recognition (ASR), prior research [1], [12],
[35] has demonstrated that ASR systems are susceptible to
adversarial examples, i.e., malicious audio inputs that trigger a
misclassification at run time. Such evasion attacks are a well-
studied phenomenon and have been demonstrated to work for
various domains [17], [20], including speech recognition [11],
[12], [35]. In contrast, attacks during training of ASR, so-
called poisoning attacks [9], [16], [49], have not been studied
yet [1]. Unlike evasion attacks, poisoning attacks compromise
the training data and cause misclassification of unaltered inputs
during inference. Consequently, such an attack is hard to detect
as the training data is usually not released with the model.

Poisoning attacks are enabled by the massive amounts of
data needed to train machine learning models: State-of-the-art
ASR systems require thousands or even millions of samples,
which makes it infeasible to manually verify the training set.
It is common practice to collect datasets from potentially
untrustworthy sources (e. g., through crowd-sourcing or using
open-source repositories). Even more problematic are privacy-
preserving training approaches like federated learning, which
make it even easier to compromise the training process [6],
[7]. By design, the training data does not leave the client and
can therefore not be verified. This property can be leveraged
by a malicious party to feed the model with poisoned data.
Acknowledging these concerns, a recent survey of 28 industry
organizations found that industry practitioners ranked data
poisoning as the most serious threat to ML systems [25],
emphasizing that poisoning attacks are a neglected, yet critical,
attack scenario.

In this paper, we propose VENOMAVE, the first training-time
poisoning attack against speech recognition. In our design of
VENOMAVE, we focus on hybrid ASR systems as they are
widely used in practice and for commercial products such as
Amazon’s Alexa and Sonos’s Voice Control [3]. The goal of our
poisoning attack is similar to adversarial example attacks [12],
[34], [35], [44]: we want to manipulate such an ASR system
so that it recognizes potentially problematic commands (e.g.,
“open the door“) while the user says something else. The
difference is that we achieve the desired outcome not by
manipulating the input utterances to the system, but rather,
by tampering with its training data.

The task of an ASR system is to transcribe an audio
waveform into a sequence of words. For a correct transcription,
speech recognition systems consider inherent structures of
speech, like the grammar of a language or context dependencies
of phonetic units. For this purpose, a hybrid system utilizes two
models, an acoustic model and a language model: the acoustic
model divides an audio waveform into overlapping frames and
processes each frame individually, which results in a sequence
of states, serving as phonetic representation. Subsequently,
this sequence is decoded with the language model that is
trained on linguistic features to predict a transcription. From
an attacker’s perspective, both components and their interplay
need to be considered. Additionally, ASR systems are—in

MFCCs EXTRACTION

fra

m
es

HMM states

MFCC
features

HMM
states

fra

m
es

MFCC features

DECODER (HMM) six two zero

transcriptionaudio waveform

Fig. 1: Overview of a state-of-the-art hybrid ASR system. The ASR system is composed of two main components: the neural network acts
as an acoustic model and the decoder employs an Hidden Markov Model (HMM) to generate the transcription. The HMM mainly describes
the language grammar, a phonetic-based word description of all words, and context-dependencies of phonetic units and words.

general—trained from scratch and we can therefore not rely
on fine-tuning a pre-trained model; a threat model that is often
assumed by previous poisoning attacks.

Having considered these challenges, we design and imple-
ment VENOMAVE against hybrid ASR systems and evaluate
the effectiveness in various aspects that are essential for a
realistic attack. VENOMAVE consists of three fundamental
steps: First, in the sequence selection, we select a target input
and define the sequence of target states that corresponds to an
attacker-chosen target transcription. Since there is no one-to-
one mapping between states and the transcription, we perform
a frequency analysis on the training data to choose a target
sequence that would also occur in natural speech. Based on this
target sequence, we select poison samples in the training data
during the poison selection step. Finally, for poison crafting,
we add malicious perturbations to the raw audio waveform of
the selected poison samples. To compute such perturbations, we
use a set of surrogate models, which are updated at each step
of the poison optimization, with the goal that the malicious
characteristics of the poisoned data transfer to any model
trained on the resulting dataset.

To empirically evaluate VENOMAVE, we perform single-
word replacement attacks on the TIDIGITS dataset [27], which
is composed of uttered digit sequences of different lengths.
When poisoning on average only 25.44 seconds of audio
(0.17 % of the victim’s training set), VENOMAVE achieves
attack success rates of over 83.3 %. We further evaluate
VENOMAVE by performing multi-word replacement attacks,
where we aim to replace all digits of the target sequence with
randomly chosen digits. To examine the scalability of our
approach, we additionally apply VENOMAVE against the larger
Speech Commands dataset [47] and show that the attack remains
successful. For this dataset, having poisoned only 116.73
seconds of audio (0.14 % of the training set), VENOMAVE
achieves an attack success rate of 73.3 %.

We verify VENOMAVE’s practical feasibility and demon-
strate that the attack remains viable in over-the-air scenarios
by playing the target audio waveforms in both simulated and
real rooms. Furthermore, we study the transferability of the
attack and use VENOMAVE’s poisoned data—generated with
a hybrid ASR system—to train an end-to-end system that is
publicly available in the speech toolkit SpeechBrain [33] and
has an entirely different architecture. For this scenario, we
observe an attack transferability rate of 36.4%.

Finally, we conduct a user study, in which we ask human
participants to transcribe the poisoned data. Such a study

has often been missing in prior works, and as noted by
Schwarzschild et al. [36], most current attacks in the visual
domain produce easily visible artifacts and distortions. For
VENOMAVE, on average, more than 85% of the poison
samples were transcribed into their original labels, showing that
VENOMAVE is able to generate clean-label poison samples.

In summary, we make the following key contributions:
• Poisoning ASR. We propose the first training-time poi-

soning attack against ASR systems and demonstrate that
poisoning attacks are a real threat to ASR systems.

• Full Training. We assume the victim’s system is trained
on the poisoned data from scratch. As shown by prior
work [36], this is significantly harder than the predomi-
nantly studied transfer learning setting.

• Practical Evaluation. We consider various aspects that
are essential for the deployment of a realistic attack against
a speech recognition system. We show that the attack is
effective with limited knowledge, in over-the-air settings,
and transfers to unknown ASR architectures.

• Intelligibility. We conduct a user study and show that the
attack generates clean-label poison samples as well as that
the original transcription is intelligible. Additionally, we
test the effects of psychoacoustics to hide the adversarial
noise below the human hearing thresholds.

To foster further research in this area, we release the source
code of all experiments as well as the poison samples generated
by VENOMAVE at https://github.com/ucsb-seclab/VenoMave.

II. TECHNICAL BACKGROUND

The task of an ASR system is to automatically transcribe any
spoken content from raw audio waveforms into text. Nowadays,
these systems can be basically of two kinds: end-to-end systems
and hybrid systems. The former refers to neural architectures
where the network directly transforms the audio waveform into
a character transcription. On the other hand, hybrid DNN/HMM
systems combine a neural network with a statistical model;
namely, a Deep Neural Network (DNN) for acoustic modeling
and a Hidden Markov Model (HMM), used as the language
model for cross-temporal information integration.

Compared to end-to-end systems, hybrid systems continue to
offer greater flexibility because of their decoupled acoustic and
language model. This, in turn, makes reusing or fine-tuning
the individual models significantly easier and computationally
less expensive. Furthermore, unlike large and monolithic end-
to-end systems, the acoustic modeling of hybrid systems can
be built closer to the user’s personal device and away from the

https://github.com/ucsb-seclab/VenoMave

cloud, alleviating the privacy concerns of customers [3]. For
these reasons [46], hybrid ASR systems continue to be used
in practice by commercial products such as Amazon’s Alexa,
or very recently by Sonos’s Voice Control [3].

Figure 1 provides an overview of the main system compo-
nents of a modern DNN/HMM hybrid system:

• MFCCs Extraction. The raw waveform input is typi-
cally processed into a feature representation that should
ideally preserve all relevant information (e. g., phonetic
information that describes the smallest acoustic unit of
speech) while discarding the unnecessary remainders (e. g.,
acoustic properties of the room). Therefore, the input wave-
form is divided into overlapping frames of fixed length,
and each frame is processed to obtain Mel Frequency
Cepstral Coefficients (MFCCs) features [40]. MFCCs
features consider the logarithmic frequency perception
of the human auditory system and are a very common
feature representation for ASR systems.

• Acoustic Model DNN. At the core of the system, the DNN
is used as the acoustic model to predict the probabilities
for distinct speech sounds (i.e., phones) for a given
input frame. The phonetic description itself together
with context-dependencies and language grammar are
described by the HMM states. Thus, the DNN outputs
pseudo-posteriors for each input frame, which describe
the probabilities for each of the HMM states.

• Decoder. Given the output matrix of the DNN, an optimal
path (which is interpreted as a sequence of words) is
searched through the HMM via dynamic programming
(e.g., Viterbi decoding [30]).

When training an ASR system, the exact alignment between
utterances and transcriptions (i.e., the labels) is usually not
available. To account for this, Viterbi training is commonly
utilized. Starting with training on equally aligned labels, an
initial DNN is trained, followed by the decoding of the training
data, which results in a new and better fitting alignment between
utterances and their transcriptions.

III. METHOD

On a high level, an adversary wants to trigger a targeted
misclassification of an unmodified utterance by introducing
maliciously altered training samples. This is a challenging
task: First, the input of an ASR system is a time series and,
consequently, the system’s output is also a sequence of classes.
An adversary needs to consider these time dependencies when
crafting poisons. Second, ASR systems are typically trained
from scratch, and an attacker needs to take the complete
training pipeline into account. This is a much more difficult
task compared to the predominately studied poisoning setting
of linear transfer learning, where only the fine-tuning of a
machine learning model is attacked [36].

To address these challenges, we introduce VENOMAVE. In
the following, we describe the details of VENOMAVE’s training-
time poisoning attack, starting with the description of our
threat model.

A. Threat Model

The attacker manipulates data points of the victim’s training
set, aiming to poison the victim’s ASR to trigger a targeted
misclassification of a specific utterance into an attacker-chosen
transcription. The attacker only modifies fractions of the
training data by adding malicious perturbations and cannot
manipulate the target utterance itself. In our threat model, we
do not limit the amount of perturbation that we add to poison
utterances. This can potentially make the poisoned data to
have wrong transcription labels. In Section IV-H, we evaluate
the human perception of the poisoned data by conducting a
listening transcription test.

For our experiments, we assume attackers with different
levels of knowledge of the victim’s training parameters and
architecture of the neural network as well as the clean training
set. In our most restricted threat model, we assume that the
adversary does not know the victim’s training data (except
for the injected poisoned data), training parameters, and the
architecture of the neural network. In this setting, the attacker
still uses a dataset with a similar distribution to the victim’s
dataset.

In any case, we assume that the victim always uses an
unknown random seed to train the entire ASR system from
scratch on the manipulated, poisoned training data. Finally,
to build the language model, we assume that the victim uses
a dictionary of phonetic word descriptions that is known to
the attacker. This is a legitimate assumption as there are a
few dictionaries that are in wide use and can thus be seen
as a quasi-standard for pronunciation models, e. g., the CMU
pronouncing dictionary for English [26].

B. VENOMAVE Algorithm

For a given target audio waveform, our goal is to create a set
of poison samples that replace the original transcription with
a target transcription if a model is trained on a dataset that
contains the poison data. At a high level, VENOMAVE achieves
this goal by modifying the selected poisoned utterances to
be similar to the target utterance in the feature space of the
poisoned model. Figure 2 illustrates the individual steps of
our attack. For the explanation of VENOMAVE, we focus on
changing exactly one word of the transcription. In this example,
the ASR system is poisoned to recognize an audio waveform
with the original transcription 382 as 392, i. e., replacing
the original word NINE with the word EIGHT. We use this
example throughout this section to explain each step in detail.
The full attack is also described in Algorithm 1.

Considering the hybrid speech recognition architecture, we
have to inject poison samples such that the trained acoustic
model generates an output sequence that will be decoded
as the target words by the language model. Therefore, the
adversarial label for the acoustic model is a sequence of HMM
states that describes our target transcription. Note that not
only one possible sequence of states would lead to a specific
transcription, as a large number of state sequences map to the
same transcription. For this reason, we first have to determine

3 8 2

frames of 𝑥

target audio
waveform 𝑥

original label

adversarial label 3 9 2

attack

𝟖𝟏 𝟖𝟐 𝟖𝟑 𝟖𝟒 𝟖𝟒 𝟖𝟓

states, generated by the decoder
(HMM), for the frames of digit 8

9

𝟗𝟏, 𝟗𝟏, 𝟗𝟏, 𝟗𝟏, 𝟗𝟏, 𝟗𝟏
.
.
.

𝟗𝟑, 𝟗𝟑, 𝟗𝟑, 𝟗𝟑, 𝟗𝟑,	𝟗𝟑

𝟖	 → 𝟗
8& → 9&, 8' → 9', 8(→ 9',
8) → 9', 8) → 9(, 8* → 9(

attacks:

𝟗𝟏, 𝟗𝟐, 𝟗𝟐, 𝟗𝟐, 𝟗𝟑, 𝟗𝟑

frequency
analysis

adversarial states:

𝒙!𝟖𝟏,𝟗𝟏%
𝟏 : Poison Selection

po
iso

n
fr

am
es

 w
ith

la
be

l/s
ta

te
 9
&

In total, freq(8&) × 𝑟+ poison frames
are selected

An example that the objective loss
(Eq. 2) is zero, in the feature space
defined by the penultimate layer
𝜙 of the neural network

𝑝# 𝑝$
𝜙(𝑝&')

𝑝#$

𝜙(𝑝&)𝜙(𝑝')

𝜙 𝑥(&) =	
𝜙 𝑝# + 𝜙 𝑝$ +⋯+ 𝜙(𝑝#$)

12

Any linear classifier (e.g., last layer of the neural network) that
classifies 𝑝!, 𝑝", … , 𝑝!" into class 𝟗𝟏 will classify 𝑥$	into class 𝟗𝟏

𝜙(𝑥(-))

𝒙!𝟖𝟏,𝟗𝟏%
𝟏 : Poison Crafting

Refining selected poison
frames 𝑥(= {𝑝#, 𝑝$, … , 𝑝#$}

Sequence Selection

Fig. 2: Training-time poisoning attack. An example of transcribing an utterance with original transcription 382 into 392 using VENOMAVE.
First, the attacker determines which frames of the audio file need to be targeted, and what is the target HMM states of these frames. For each
of these frame, an individual poisoning attack is performed to fool the surrogate networks. After a successful attack, the poisons transfer to
the victim’s network and decode the target transcription 392. For simplicity, only the attack for the first frame is depicted, considering only
one surrogate model. In practice, an entire time series needs to be attacked successfully.

which state sequence is a promising candidate to achieve the
desired output transcript.

To choose the sequence as well as select candidate samples to
poison, VENOMAVE relies on a reference ASR system, which
is trained on the clean training set. We refer to this system
as ⟨M,H⟩, where M and H denote the acoustic model and
language model, respectively.

1) Sequence Selection: The language model H defines the
word W as a sequence of states W=[wκ] with κ = 1, . . . ,K.
Assuming that the sequences for the digits EIGHT and NINE
consist of 5 and 3 states, respectively, the two words can
be described with HMM states EIGHT=[81, 82, 83, 84, 85]
and NINE = [91, 92, 93]. In general, the number of frames
of an uttered word is larger than the number of HMM
states. That is, for the word NINE uttered across 6 frames,
both sequences [91, 91, 92, 92, 93, 93] and [91, 91, 91, 92, 92, 93]
could be selected as the target. However, a sequence should be
selected that is more probable to be decoded as NINE. Hence,
we look at the appearances of the word NINE in the dataset
and select the most common pattern as our target sequence.

Using ⟨M,H⟩, we calculate the relative frequency of
state wκ as the average number of its occurrences in utterances
of NINE. Then, we select a target sequence that has a

distribution of relative frequencies similar to what we have
observed in the dataset. Therefore, in our running example, the
original sequence [81, 82, 83, 84, 84, 85] should be changed to
[91, 92, 92, 92, 93, 93], as the state 92 appears three times more
often in the training set than the state 91. We then divide our
attack into N =6 smaller poisoning attacks, described by a
set T={x(i)

<Yi,Zi>
}Ni=1 of frames x

(i)
<Yi,Zi>

with an original
state Yi and an adversarial state Zi. In our example in Figure 2
the poisoning set is described as{
x
(1)
<81,91>

, x
(2)
<82,92>

, x
(3)
<83,92>

, x
(4)
<84,92>

, x
(5)
<84,93>

, x
(6)
<85,93>

}
.

2) Poison Selection: We select poison utterances in training
data based on the chosen target sequence; for each attack pair
x
(i)
<Yi,Zi>

, we select poison frames Pi with label Zi from one
or more utterances. We use the frequency of the original state
Yi to determine the number of poison frames to be⌈

freq(w=Yi) · rp
⌉
, (1)

where 0 < rp < 1 describes the poison budget. Thus, if an
original state Yi occurs twice as often in the training set as
another original state Yj , we also select twice as many poison
frames for the attack x

(i)
<Yi,Zi>

than for the attack x
(j)
<Yj ,Zj>

.

Algorithm 1 VENOMAVE

Inputs
xt ▷ Target audio waveform
Wt ▷ Target transcription
M ▷ Number of surrogate models
C ▷ Training dataset

Phase 1: Initialization
We train a reference neural network M and language model H on the
clean dataset C. These are used for poison and sequence selection.

1: M, H ← train(C)

Phase 2: Sequence Selection
Get the relevant audio frames x(i) for the target transcription, along
with the corresponding HMM states {Yi}Ni=1 with the trained reference
models ⟨M,H⟩ (line 2). Perform frequency analysis on C to select the
adversarial sequence (lines 3).

2: x(i), {Yi}Ni=1 ← get target frames(⟨M,H⟩, xt)
3: {Zi}Ni=1 ← select adv states(H, C, Wt)

Phase 3: Poison Selection
For each attack pair T = {x(i)

<Yi,Zi>
}Ni=1 select poison frames Pi.

4: for i = 1 to N do
5: Pi ← select poison frames(C, Yi, Zi)
6: end for

Phase 4: Poison Crafting
In each round k, we retrain surrogates from scratch on the current (poi-
soned) dataset D (lines 9-11). We iteratively update poisons with respect
to ∇loss (lines 12-19) calculated via Equation (2), and subsequently
update D (line 20). After each round k, we test D with a (surrogate)
victim model MV (lines 22).

7: D ← C
8: for k = 1 to K do
9: for m = 1 to M do

10: Mm, Hm ← train(D)
11: end for
12: while not converged do
13: loss ← 0
14: for (x(i), Yi, Zi)← T do
15: loss ← loss + L(x(i), Pi, {Mm}mm=1)
16: end for
17: loss ← loss

N
18: update {Pi}Ni=1 using ∇loss
19: end while
20: D ←update dataset(C, {Pi}Ni=1)
21: MV , HV ← train(D)
22: break if attack is successful (early stopping)
23: end for

The intuition behind this choice is that the attack might fail
if the target frame x(i) has adjacent neighbor frames from its
class Yi in the victim’s training set. This has also been observed
in prior work [49]. The poison frames—no matter how well
they are crafted—need to compete with these neighbor frames
to successfully inject the malicious decision boundaries during
the training phase.

Our attack only perturbs particular frames of selected
poisoned audio files. This allows to distribute poison frames
over multiple utterances, with each utterance consisting of
mostly clean frames and only a few poison frames.

3) Poison Crafting: The goal of this step is to modify the
selected poison utterances such that they are “close enough”
to the target utterance in the feature spaces of the surrogate
poisoned models, after they are trained on the poisoned dataset.
The motivation behind this goal is the mathematical guarantee
that any linear classifier that associates a set of samples P to
class Z will also classify any point inside their convex hull
as class Z. Specifically, we divide the network into two parts:
(1) all layers up to the penultimate layer, named the feature1

extractor network Φ, and (2) the last layer, which is a linear
classifier. The victim’s model will identify the target frame
x(i) as the target class Zi, if Φ(x(i)) lies within the convex
hull of class Z formed by the poison frames {Φ(x(p)

γ)}Pp=1.
For each attack pair x(i)

<Yi,Zi>
, we use M surrogate models

(i.e., similar models trained with different seeds) to optimize
the poison frames Pi = {x(p)

γ }Pp=1 with the following loss:

L := min
{x(p)

γ }

1

2M

M∑
m=1

∥∥∥Φ(m)(x(i))− 1
P

∑P
p=1 Φ

(m)(x
(p)
γ)

∥∥∥2

∥Φ(m)(x(i))∥2
(2)

To solve this non-convex problem, we iteratively apply
gradient descent to optimize the poison frames Pi.

Our motivation behind optimizing Equation 2 over M
surrogate models is based on prior work [2], [49] that rely
on the assumption that by obtaining the above heuristics for
similar models, such a guarantee will also transfer to unknown
victim models. These attacks presented high success rates
against linear transfer learning, where a pre-trained but frozen
network Φ is used to calculate features for an application-
specific linear classifier, which is fine-tuned on the poisoned
dataset. However, as shown by Schwarzschild et al. [36], such
heuristics will not hold when the victim’s model is trained on
the poisoned dataset from scratch, as the feature space is also
altered during training. In fact, we made similar observations
in preliminary experiments.

To cope with this challenge, we train a set of surrogate
networks {Mm}Mm=1 from scratch on the current (poisoned)
dataset at the beginning of each round of the attack. Subse-
quently, we modify the poison samples to achieve our desired
heuristics with respect to the refreshed surrogate models. Our
intuition is that after several rounds of the attack, we reach a
state that the poisoned data needs no further modifications to
obtain the heuristics. To check whether this happens or not, at

1Throughout the paper, by the term features, we refer to the features
represented by the penultimate layer, not MFCCs.

the end of each round of the attack, we train a (surrogate) victim
ASR system on the current poisoned dataset from scratch. The
attack terminates if either it succeeds against this ASR system
(early stop), or we reach a maximum number of rounds K.

For the evaluation of VENOMAVE, we consider an attack
to be successful if and only if it succeeds against the target
victim’s ASR system, where both the neural network and
language model components are trained on the poisoned dataset
from scratch. Our experiments demonstrate that the malicious
characteristics of our crafted poisoned data successfully transfer
to the victim’s poisoned model with high probability.

IV. EVALUATION

In this section, we empirically assess VENOMAVE in a series
of experiments. We start by evaluating the attack’s efficacy on
the task of recognizing sequences of digits with the TIDIGITS
dataset [27]. Build upon, we consider a larger ASR system
that is trained on the Speech Commands dataset [47]. Our
experiments show that the attack is effective in poisoning ASR
systems, remains viable with limited knowledge about the
victim’s system, and in over-the-air settings. Furthermore, we
demonstrate that the malicious characteristics of the poisoned
data—crafted with VENOMAVE for a hybrid ASR system—
transfer to an end-to-end system. Throughout the experiments,
we use the open-source ASR system used by Däubener et
al. [14] for studying evasion attacks against ASR systems.

A. Metrics

Before we get into the details of our results, we describe
the standard measures that we use to assess the quality of
the poison samples, both in terms of effectiveness as well as
conspicuousness.

1) Attack Success Rate: In all experiments, an attacker aims
to induce a targeted misclassification for a single utterance.
If the targeted misclassification is not triggered, we consider
the attack as failed. The attack success rate then describes the
percentage of successful attacks.

2) Clean Test Accuracy: We evaluate the victim’s perfor-
mance against the test set to calculate the clean test accuracy
of the model. An ideal poisoning attack does not degrade the
model performance for non-target inputs; otherwise, it might be
suspicious. For all test samples, given the model transcriptions,
we count and accumulate all substituted words S, inserted
words I , and deleted words D to calculate the accuracy via

accuracy =
N − I − S −D

N
,

where N is the total number of words in the test set’s ground-
truth labels.

3) Segmental Signal-to-Noise Ratio (SNRseg): To quantify
the magnitude of required changes, we use the Segmental
Signal-to-Noise Ratio (SNRseg). This metric measures the
amount of noise σ added by an attacker to the original signal x
and is computed via

SNRseg(dB) =
10

K

K−1∑
k=0

log10

∑Tk+T−1
t=Tk x2(t)∑Tk+T−1
t=Tk σ2(t)

,

TABLE I: Neural network architectures used in experiments. Networks
use two or three hidden layers, each with a softmax output layer of
size 95, corresponding to the number of HMM states. The baseline
test accuracy is for when the victim uses a clean dataset.

Name Layer description # Parameters

DNN2 (100, 100) neurons 54,895
DNN2+ (100, 200) neurons 100,095
DNN3 (100, 100, 100) neurons 64,995
DNN3+ (400, 300, 200) neurons 340,395

where T is the segment length and K the number of segments.
Thus, the higher the SNRseg, the less noise has been added. We
use a frame length of 12.5ms, which corresponds to T = 200
at a sampling frequency of 16 kHz. As only very small parts
of the poison files are changed, we measure the SNRseg only
for the poisoned frame (i.e., clean parts of the poison samples
are excluded) to provide a fair assessment of the added noise.

B. Attack Parameters

We first evaluate the attack efficacy with respect to its salient
parameters: the number of surrogate models as well as varying
sizes of the poison budget. For this experiment, we consider
a threat model, where the attacker has full knowledge of the
victim’s network architecture, training parameters, and training
set. The adversary uses this knowledge to train surrogate ASR
systems for poison optimization. We run each attack instance
for a maximum of K = 20 rounds. For the early stopping
criteria, we test after each round, if we succeed against a
(surrogate) test model.

1) Experimental Setup: We use the TIDIGITS dataset [27],
which is designed for speaker-independent recognition of digit
sequences and consists of eleven words: ONE, TWO, ..., NINE,
ZERO, and OH. We use 8,623 utterances for the training set
and 4,390 utterances for the test set. The sequences are spoken
by 225 speakers (111 men and 114 women), which are split
equally into disjoint sets between the training and test set. For
our poisoning attack trials, we randomly sample 30 single-
digit utterances among the 4,390 test samples and assign a
target label to each. Target labels are chosen randomly and are
different from the ground-truth transcription.

The victim’s ASR system uses the DNN2+ architecture
(described in Table I) with a softmax output layer of size 95,
corresponding to the number of HMM states. This system is
trained from scratch for 33 epochs with a batch size of 32
using the Adam [22] optimizer with a learning rate of 1e−4.
This training also includes three epochs of Viterbi training
to build the language model. Hyperparameters were chosen
to maximize the clean test accuracy. For the baseline model
—only trained with clean data— we achieved a test accuracy
of 98.79%.

For evaluation of the attack, the random seed used by the
victim is unknown. Thus, the specific parameters of the victim’s
ASR system, the neural network, and the HMM—which depend
on the neural network due to Viterbi training—are not used
during poison optimization.

TABLE II: Evaluation of VENOMAVE when it uses different numbers
of surrogate networks. The rp is set to 0.005. This experiment was
performed on a machine with NVIDIA RTX A6000 graphics cards
(with CUDA 11.0, PyTorch 1.9.1, and Torchaudio 0.9.1). Note that as
VENOMAVE employs an early-stopping procedure (see Algorithm 1),
increasing M will not necessarily lead to a longer attack time.

M

1 2 4 6 8 10
Attack step (K) 15.7 11.5 7.9 7.6 6.8 7.0
Attack time (hours) 1.54 1.36 1.46 3.43 3.33 5.33

Clean test acc. (%) 97.84 97.84 97.81 97.79 97.84 97.81

Attack succ. rate (%) 43.3 76.7 80.0 80.0 86.7 83.3

TABLE III: Evaluation of VENOMAVE when the poison budget rp is
successively increased from 0.001 to 0.01.

rp

0.001 0.003 0.005 0.01

Poison data length (seconds) 6.20 15.93 25.44 48.73
Poison data samples 96.23 248.10 387.83 693.57

Clean test accuracy (%) 97.85 97.84 97.84 97.76

Attack success rate (%) 23.3 76.7 86.7 83.3

To accelerate the attack, we freeze the HMM component
and only train the DNN for the surrogate ASR systems. We
found this effective as the language model does typically not
change significantly. The frozen surrogate HMM is trained
in advance by training an ASR system for 15 epochs on the
clean training set, followed by three epochs of Viterbi training.
During the attack, we train the surrogate ASR systems for 25
epochs until convergence.

2) Results: We first evaluate the attack success rate as a
function of the number of surrogate models. Table II presents
the performance of VENOMAVE for different numbers of
surrogate networks. Note that a higher number of surrogate
models adds to the complexity of Equation 2. However, more
surrogate networks can help the attack to succeed in fewer
steps and, consequently, this increased complexity does not
necessarily lead to a longer attack time. This is also evident
from the results in Table II. We obtain the highest attack success
rate (86.7 %) for M = 8 surrogate models. For the case where
we use M = 10 surrogate models, the attack time and required
attack steps are increased while we have a lower attack success
rate. Note that the number of attack steps K in Table II is the
average number for all 30 poisoning trials for each entry.

Next, we evaluate VENOMAVE for varying levels of poison
budget rp (see Section III-B3). The results are shown in
Table III. We observe a general trend that an increase of the
poison budget leads to a higher attack success rate (23.3 %
→ 83.3 %), which stagnates for poison samples budgets larger
than 0.005. A higher budget, allows the attacker to manipulate
an increasing number of poison frames and, thus, has more
control over the training process. However, from a certain
number, this effect is less distinct as the surrogate models
also need to maintain a good clean test accuracy. The general
improvement comes at a price; the length and number of the

TABLE IV: The attack performance for unknown training parameters
and network architectures.

Victim’s network

DNN2 DNN3 DNN3+

Baseline test accuracy (%) 98.75 98.41 99.01
Clean test accuracy (%) 97.92 98.04 99.02
Attack success rate (%) 86.7 86.7 83.3

TABLE V: Evaluation of VENOMAVE for partial and unknown set of
clean training samples. The victim uses different training parameters
than the attacker. We divide the training set of TIDIGITS into two
subsets, with “Split 1” containing the first half and “Split 2” the
second half of the speakers (56 speakers each).

Attacker Victim Clean test Attack succ.
Network Tr. set Network Tr. set acc. (%) rate (%)

DNN2+ Split 1 DNN3 Split 2 97.92 86.7
DNN3 Split 1 + 2 98.03 80.0

poisoned data increases (6.20 s → 48.73 s) from a total of
15,254 s training data. We observe the best performance with a
budget rp=0.005, where we poison only 0.17 % of the training
set while achieving an attack success rate of 86.7 %.

Figure 3 shows an example of a poisoned audio file, as well
as its respective original audio file.

C. Limited-Knowledge Adversary

For most applications in practice, it is unrealistic to assume
that an adversary has detailed knowledge of the exact training
parameters, architecture, and the training data that is used by
the victim. In the following, we, therefore, want to relax the
threat model and consider an adversary with limited knowledge.
We consider two settings: (1) first, we restrict access to the
victim’s model architecture and training parameters, and (2)
second, we extend the knowledge limitations and additionally
restrict access to the victim’s training data (except for the
poisoned data). For both settings and based on the previous
experiments, we set the poison budget to rp = 0.005 and
consider M = 8 surrogate models.

1) Model Architecture and Parameters: We consider that the
victim uses one of three different model architectures: DNN2,
DNN3, or DNN3+ from Table I. All models are trained from
scratch for 32 epochs, of which epochs 11 and 12 include
Viterbi training. The victim uses Adam with a learning rate
of 4e−4, a batch size of 64, and a dropout probability of 0.2.
The dropout layer is added after the first hidden layer.

Table IV shows that the malicious characteristics of the
poisoned data remain even if the victim uses different training
parameters and network architectures. Also, for all models the
clean test accuracy remains almost the same in comparison to
the baseline test accuracy, which measures the accuracy of the
models trained on exclusively clean data. It is worth noting that
in prior work, dropout was typically disabled, as in a transfer
learning scenario as a rational victim will usually overfit the
training set [2], [49]. Since this is usually not the case when
the victim’s model is trained from scratch, we enable dropout
in this experiment. Our results show that the poisoned data
survive the randomness introduced by the dropout.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (s)

0

2000

4000

6000

8000

F
re

q
u

en
cy

(k
H

z)

−350

−300

−250

−200

−150

−100

(a) Original Signal

0.5 1.0 1.5 2.0

Time (s)

0

2000

4000

6000

8000

F
re

q
u

en
cy

(k
H

z)

−350

−300

−250

−200

−150

−100

(b) Original Signal

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (s)

0

2000

4000

6000

8000

F
re

q
u

en
cy

(k
H

z)

−350

−300

−250

−200

−150

−100

(c) Poison Signal
0.5 1.0 1.5 2.0

Time (s)

0

2000

4000

6000

8000

F
re

q
u

en
cy

(k
H

z)

−350

−300

−250

−200

−150

−100

(d) Poison Signal

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (s)

0

2000

4000

6000

8000

F
re

q
u

en
cy

(k
H

z)

−350

−300

−250

−200

−150

−100

(e) Difference
0.5 1.0 1.5 2.0

Time (s)

0

2000

4000

6000

8000

F
re

q
u

en
cy

(k
H

z)

−350

−300

−250

−200

−150

−100

(f) Difference
Fig. 3: Spectrograms of Poisons. We present two example poisons computed with VENOMAVE. The left column shows an utterance of
digit sequence SEVEN, THREE, FOUR, NINE, OH and the right shows an utterance of digit sequence FOUR, EIGHT, ONE, FOUR,
THREE. Both poison the digit FOUR to OH. Figure 3a and 3b show the unmodified signals, Figure 3c and 3d depict the poison version, and
Figure 3e and 3f show the respective differences of both versions.

2) Training Dataset: Building upon the previous experiment,
we further reduce the attacker’s knowledge and assume that the
attacker only has partial knowledge about the training set of the
victim and its underlying distribution. In general, the adversary
uses their knowledge about the training data to (1) perform the
ratio analysis (see Section III) and (2) train surrogate networks
for the poison crafting step. Note that for this experiment we
continue to use an unknown victim’s model architecture.

For the experiment, we divide the training data into two
subsets with disjoint sets of 56 speakers each. We restrict the
adversary to access only the first subset (Split 1, 56 speakers).
For the victim, we consider two different scenarios: (1) training
samples only from the second subset (Split 2, 0 % overlap),
and (2) the entire training set (Split 1+2, 50 % overlap). Similar
to the previous experiment, we evaluate a victim with different
training parameters and network architecture (DNN3). As the
poison samples only depend on Split 1, we use the same data
for both cases.

Table V presents the performance of VENOMAVE for these
two scenarios. When the victim’s training set has no overlap
with the attacker’s training set, VENOMAVE achieves an attack
success rate of 86.7 %. When the attacker’s training set consists
of 50 % of the victim’s training set, VENOMAVE achieves an
attack success rate of 80.0 %. While the same poisoned data is
used in these two cases, in the latter case, the poisoned data
are competing with more clean data points. This may explain
why VENOMAVE achieves a lower attack success rate despite

the fact that it has partial knowledge of the victim’s training
set. The average clean test accuracy is 97.92% and 98.03% for
0 % and 50 % overlap cases, respectively.

D. Multi-Word Replacement Attack

Next, we want to scale the attack to more complex targets
and, in particular, aim to replace multiple words. This can be
realized by launching multiple individual word replacement
attacks simultaneously. For a successful multi-word attack, all
single-word attacks need to be successful. For this experiment,
we evaluate the attack for sentences with two, three, and four
digits. For each set, we select 20 random audio files and aim to
replace all the words with randomly chosen adversarial words.
As an example, the adversary might try to fool the ASR system
to recognize an utterance of O89 as 762. We continue to use
a limited-knowledge attacker that does not have access to the
victim’s training parameters and network architecture. We use
the same setup as before and DNN3 as the victim’s network
architecture but a larger output layer of size 350 to contain all
required phones of the extended language model.

Table VI shows the attack statistics for sentences with
different numbers of words. For reference, we repeat the results
for the single-word attack in Table VI. The attack remains
effective for longer sequences of words albeit with a decreased
success rate. Also, the attack uses more poisoned data to
perform a multiple-digit replacement compared to a single-
word replacement attack.

TABLE VI: Results for target sentences with different numbers of
words. Note that the performance of the single-word attack is also
presented as a reference.

Number of Words

1 2 3 4

Poison data length (seconds) 25.44 46.17 63.85 89.68
Poison data samples 387.83 630.39 841.16 1,289.85

Clean test accuracy (%) 98.04 97.84 97.67 97.75

Attack success rate (%) 86.7 75.0 60.0 60.0

E. Speech Commands Dataset

To further examine the practical feasibility of our attack, we
evaluate VENOMAVE on a larger ASR system. To this end,
we use the Speech Commands corpus [47] used for keyword
spotting. This dataset consists of 105,829 one-word utterances
and contains 35 different words:

• Digits ZERO, ..., NINE
• Common words for IoT or robotics applications. YES, NO,
UP, DOWN, LEFT, RIGHT, ON, OFF, STOP, and GO

• Command words. FORWARD, FOLLOW, BACKWARD, and
LEARN.

• Auxiliary words. BED, BIRD, CAT, DOG, HAPPY, HOUSE,
MARVIN, SHEILA, TREE, VISUAL, and WOW.

For our poisoning attack trials, we randomly select 15 audio
files and for each sample, we pick a random adversarial target.

To fit this dataset, we use a larger neural network as well as
a larger language model with 350 states. We use the DNN3+

architecture for our surrogate networks. As before, we use a
fixed HMM during the attack, which is trained in advance by
training an ASR system for 16 epochs on the clean training
set, of which the last epoch includes Viterbi training. We
use this surrogate HMM at the beginning of each step of the
attack to train four surrogate networks on the latest version
of the poisoned dataset for 20 epochs with a batch size of
32. We verify that the training converges at 20 epochs. We
use the Adam [22] optimizer with a learning rate of 1e−4 for
poison crafting.

For the victim, we use a network architecture consisting
of four hidden layers with 300, 200, 200, and 200 neurons,
respectively. The victim trains the ASR system from scratch
for 31 epochs, of which the eleventh epoch enables Viterbi
training. For the victim’s training, a learning rate of 4e−4 and
a batch size of 64 is used.

With a poison budget of rp = 0.02, VENOMAVE achieves
a success rate of 73.3% while poisoning only 0.14 % of the
training set (116.73 seconds of audio). Table VII shows the
attack performance for each example. We successfully poisoned
11 of the 15 tirals. In general, we need to poison more and
longer audio sequences with this extended dataset but the attack
remains successful in most of the cases.

F. Over-The-Air Attack

Prior work on audio adversarial examples [34], [48] has often
struggled in an over-the-air setting: during the transmission
over the air, the audio signal is altered which may affect the

poisoning success. In this following, we study the effects of
transmission over the air on our poisoning attack.

First, we consider a simulated setting. To this end, we use
the Python RIR Simulator implementation [10] and simulate the
transmission in a room via a convolution with a Room Impulse
Response (RIR) [4]. We evaluate the attack in three simulated
rooms with the microphone and the speaker being positioned
randomly. For each setting, we use four different reverberation
times between 0.4–1.0 seconds. Second, we evaluate the attack
in a real physical room with an iPhone 13 Pro microphone
and a JBL GO speaker.

We consider both datasets. For the TIDIGITS dataset, we
use the poison samples that are generated in Section IV-C2 for
the 0 % overlap setting. Consequently, the adversary does not
know the victim’s DNN architecture and training parameters
as well as the training set (except for the poisoned data).
Note that the victim uses DNN3 in this evaluation. For the
Speech Commands dataset, we use the same poisoned data as
in Section IV-E.

Table VIII shows the results for different reverberation times
(RT) in seconds, room dimensions, and speaker and microphone
positions. In addition, we also report the results for the physical
room. For the TIDIGITS dataset, VENOMAVE maintains a
success rate of 33.3-73.3% across different room settings as
opposed to the success rate of 86.7% when feeding the input
directly to the recognizer. For the Speech Commands dataset,
VENOMAVE maintains an attack success rate of 20.0-60.0%
across different room settings as opposed to the success rate
of 73.3% when feeding the input directly to the recognizer.

G. Transferability

In the previous sections, we focused on hybrid ASR systems,
and our results demonstrated that these are vulnerable to dataset
poisoning attacks. In this experiment, we consider the effect of
the poisons for other ASR architectures. In particular, a victim
that uses an end-to-end ASR system.

For this, we use an end-to-end system designed for the task
of keyword spotting [5], [29], [38] on the Speech Commands
dataset based on SpeechBrain [33].2 This ASR system has
a total of 4,494,777 trainable parameters. For reference, the
hybrid system that we evaluated in Section IV-E, has a total
of 265,295 trainable parameters, 0.06 times less than the end-
to-end system.

We use the same poisons we generated in Section IV-E to
attack hybrid ASR systems. For each of the 11 successful
attack examples, we evaluate the victim’s end-to-end system
by training it on the poisoned datasets. We observe that the
attack fools the victim’s end-to-end system for four examples,
showing a transferability rate of 36.4%. The test accuracy for
the poisoned models is on average at 95.06%.

H. User Study

To evaluate the human perception of our poison samples,
we conduct a listening test, where we asked participants to

2Recipe: https://github.com/speechbrain/speechbrain/tree/develop/recipes/
Google-speech-commands

https://github.com/speechbrain/speechbrain/tree/develop/recipes/Google-speech-commands
https://github.com/speechbrain/speechbrain/tree/develop/recipes/Google-speech-commands

TABLE VII: Evaluation of VENOMAVE on the Speech Commands dataset using 15 different random attack examples. The poison budget rp
is 0.02, and the attacker uses four surrogate networks to craft the poisoned data. On average, VENOMAVE uses 116.73 seconds of poisoned
data (0.14 % of the training set). The total length of the training data is 84,054 seconds. The average SNRseg for poison frames is 4.14.

Original Adversarial Poisoned data Poisoned frames Attack Clean test
word word length (seconds) # samples SNRseg successful? accuracy (%)

learn on 31.59 396 7.99 ✓ 86.83
nine four 156.71 1,887 7.49 ✓ 87.07
three six 124.71 1,654 -1.74 ✗ 87.16
six off 91.55 1,057 -0.63 ✓ 86.98
yes go 140.74 1,493 7.75 ✓ 86.90
six five 128.36 1,584 7.39 ✓ 87.72
follow three 51.06 865 1.72 ✗ 87.39
four zero 164.14 2,012 8.37 ✓ 86.99
follow two 45.35 549 3.74 ✓ 86.79
four yes 184.95 2,153 4.06 ✓ 87.35
six seven 217.60 2,412 4.07 ✗ 87.35
one forward 80.66 1,064 5.09 ✓ 85.86
four up 150.78 1,659 -1.67 ✓ 86.77
up off 79.65 1,025 3.07 ✗ 86.67
one down 94.10 1,256 5.33 ✓ 87.12

TABLE VIII: VENOMAVE’s evaluation after the transmission in three simulated rooms, selected from related work [42], and one real physical
room. For the TIDIGITS dataset, the numbers are for the poison samples that are generated in Section IV-C2 for the 0 % overlap setting. For
the Speech Commands dataset, we use the poisoned data that VENOMAVE crafted in Section IV-E.

TIDIGITS Speech Commands
Room Mic. Speaker Attack succ. rate (%) Attack succ. rate (%)

Type Dim. (m3) Position Position RT=0.4 RT=0.6 RT=0.8 RT=1 RT=0.4 RT=0.6 RT=0.8 RT=1

Simulated 10.7× 6.9× 2.6 1.0× 4.5× 1.3 8.1× 3.3× 1.4 53.33 46.67 36.67 33.33 20.00 20.00 26.67 20.00
Simulated 4.6× 6.9× 3.1 3.8× 3.2× 1.2 3.8× 5.3× 1.0 63.33 60.00 50.00 46.67 60.00 53.33 40.00 33.33
Simulated 7.5× 4.6× 3.1 0.4× 0.9× 1.1 6.9× 1.9× 2.6 73.33 60.00 56.67 56.67 46.67 46.67 40.00 40.00

Physical 3.7× 3.4× 2.4 1.7× 2.7× 1.2 2.1× 0.5× 0.8 73.33 33.33

TABLE IX: Results for different levels of psychoacoustic filtering Λ
(poison budget rp is set to 0.005).

Poisoned frames Attack succ. Clean test
Λ (dB) SNRseg rate (%) acc. (%)

20 4.61 0.0 97.80
30 4.25 43.3 97.80
40 3.54 66.7 97.81
50 4.13 80.0 97.80

NONE 2.17 86.7 97.84

transcribe utterances of the poisoned data. Furthermore, in this
section, we additionally consider psychoacoustic modeling [35],
[50] as a mechanism to limit the perceptible perturbations
introduced by the attack.

1) Psychoacoustic Modeling: To make poisons less con-
spicuous, we can utilize psychoacoustic modeling to limit
audible distortions. Recent attacks against ASR [32], [35]
proposed psychoacoustic hiding as a method to create less
perceptible adversarial noise. To identify inaudible ranges, these
attacks use dynamic hearing thresholds, which describe the
masking effects in human perception that arise as a function
of the interactions between different co-occurring acoustic
frequencies. We implement psychoacoustic hiding similar to
what is described by Schönherr et al. [35]. Appendix VIII-A
elaborates in detail how we employ psychoacoustic filtering.

We evaluate VENOMAVE for varying degrees of psychoa-
coustic filtering, controlled through margin Λ (in dB) that
allows the attack to surpass the hearing thresholds. The higher
Λ, the more audible noise is allowed. As shown by Table IX,
enabling the psychoacoustic hiding decreases the attack success
rate, while the SNRseg of poisoned frames improves. The case
without enforcing hearing thresholds is denoted as NONE. Note
that the choice of poison samples and frames does not depend
on the margin Λ; that is, the average length of the poisoned
data is always 25.44s in Table IX.

2) Transcription Test: For the study, we randomly selected
20 poison samples from 12 successful attack examples, both
when the psychoacoustic hiding was disabled and for Λ=30 dB,
which resulted in a pool of 480 poison samples. For verification,
participants also transcribed five hidden clean samples.

We asked 23 English-speaking persons to transcribe a random
subset of utterances. The participants were not informed if a
sample has been modified or if it represents a clean sample.
On average, each user transcribed 40 poison samples. For each
attack example, we report the ratio of the poison samples that
are transcribed into their original label.

When the psychoacoustic hiding is disabled, 87.1 % of the
poison samples were transcribed into their original labels. On
the other hand, for Λ=30 dB, 85.0 % of the poison samples
were transcribed into their original labels. These results show
that even though enforcing hearing thresholds of Λ = 30 dB

improves the SNRseg values of the poisoned frames (from 2.17
to 4.25, see Table IX), the performance of the transcription
test is not improved.

The results of this feasibility study also indicate that the
poisoned data generated by VENOMAVE contain samples that
can be considered as clean-label samples. Such a study has often
been missing in prior works, and as noted by Schwarzschild
et al. [36], most current attacks in the visual domain produce
easily visible artifacts and distortions.

V. DISCUSSION

Next, we expand our analysis of VENOMAVE by providing
insights into our results. We will also summarize the results
and discuss major findings and limitations.

A. Attack Parameters

Here, we discuss the impact of VENOMAVE’s parameters
on the attack success rate.

1) Poison Budget & Surrogate Models: Using a larger poison
budget rp increases the number of poisoned files (and frames).
However, we show that beyond a poison budget of 0.005, the
attack success does not further improve (see Table III), and,
therefore, more poison samples are not necessarily required
for the attack. The same can be observed for the number
of surrogate models; using more surrogate models does not
necessarily increase the attack’s success (see Table II).

2) Target Selection: In Section IV-D, we show that VENO-
MAVE is not limited to the replacement of single words;
it can successfully replace all the words with the intended
adversarial words. Consequently, an attacker has full control
of the output of the target, and arbitrary transcriptions can be
chosen. This is further supported in our experiments with the
Speech Commands dataset, where we show that VENOMAVE
scales to ASR systems with a larger vocabulary.

To further understand how the number of HMM states of
the target word affects the success rate of VENOMAVE, we
consider our single-word replacement attack in Section IV-C
on the TIDIGITS dataset. We did this experiment over 30 trials,
which we divide here into three different categories: (1) In 11
trials, the target word has more HMM states than the original
word, (2) in 7 trials, the target word and the original word
have the same number of HMM states, and (3) in 12 trials the
target word has less HMM states than the original word. For
the results presented in Table IV (last column), the attack fails
on two, one, and two trials, respectively, in these three types
of trials, showing that the difference between the number of
HMM states of the target and original word does not affect
the success rate of the attack.

3) Sequence Selection: To quantify the effect of the sequence
selection on the attack success rate, we repeat the experiment
from Section IV-C (Table IV). Instead of choosing the target
sequences based on the frequency analysis (explained in
Section III-B), we now randomly select the target sequence.
We require that the sequence has to be in ascending order
(e.g., for a target sequence like [92, 92, 91, 91, 93, 93] the
language model can otherwise not return a valid word). In this

experiment, we observe a drop in the attack success rate by
23.33 percentage points (from 83.33% to 60.0%).

B. Clean Test Accuracy

In our evaluation, we always use the entire test dataset to
calculate the clean accuracy using the edit distance between
the ground-truth label and the predicted transcription. Here,
we aim to understand how the attack affects the recognition of
the target word in isolation. We use the results presented in
Section IV-C for the following measurements:

• For each digit, we only consider the test audio files that
contain the digit to calculate the number of errors (I +
S + D, Section IV). On average over 30 trials, the total
number of errors for the target and original digits are 93
and 95 words, respectively, while the number of errors
for the other digits is 111 words.

• For each digit, we consider the test audio files that do
not contain the digit. For these files, we count how often
the model’s transcription (mistakenly) contains the digit.
On average over 30 trials, for 9.97 utterances, the model
mistakenly recognizes the target digit. For the original
digit, this value is 8.97, while for the other digits, this
value is 10.26 on average.

C. Practical Considerations

In the following, we elaborate on the practical aspects of
our attack and reflect on its implications and limitations.

1) Clean-Label Poison Utterances: In the listening test, we
verify that VENOMAVE is able to generate clean-label poison
samples. We ask participants to transcribe poisoned audio
samples and on average, more than 85% of the poison samples
were transcribed into their original labels, showing that even
manual verification of training data would not be effective to
prevent audio poisoning attacks.

Furthermore, in privacy-preserving federated learning sce-
narios, where the training data and the training is decentralized,
a party can easily compromise the training data [43]. Here,
the poison samples are not constrained to clean-label data
points, as the victim has no access to the training data, while
the attacker has full control of their data. Additionally, our
limited-knowledge experiments have shown that controlling
only parts of the training process and training data—as would
be the case in a federated learning scenario—is very effective.

2) Limited Vocabulary: We showed our attack is successful
on two datasets, TIDIGITS and Speech Commands, of which
the latter is ten times bigger than the former. We argue that our
results show that data poisoning attacks against ASR systems
are a viable threat that needs to be considered by researchers
working on ASR systems. Based on our foundations, we hope
that future work will improve the scalability of our attack and
include larger datasets in their evaluation and develop more
robust ASR systems that are resistant to data poisoning attacks.

3) Fine-Tuning: Although hybrid ASR systems are typically
trained from scratch, we now want to expand our evaluation
and also consider a fine-tuning scenario. For this, we use
the poisoned data generated for the most restricted adversary

(Table V). That is, the adversary’s training set is the “Split
1” subset. For the victim’s model, we divide the “Split 2”
subset into two parts of equal size (each with 28 speakers).
The first part is the training set and contains only clean data.
The second part, which is the fine-tuning set, is poisoned. On
average, over the same 30 trials, we observe an attack success
rate of 63.33% (83.33% for the from-scratch training scenario).
For training and fine-tuning, we used a learning rate of 1e-4
and 5e-5, respectively.

4) Over-the-Air: In Section IV-F, we demonstrate that
VENOMAVE is also successful if the targeted audio signal is
played over the air in simulated and physical rooms of different
sizes. This shows the general robustness of our attack and that
the poison samples also remain effective after a transmission’s
alterations. Notably, the attack is generic in the sense that the
properties of the room need not be known beforehand.

5) Transferability To End-To-End Keyword Spotting: To
verify the practicality of VENOMAVE in the real world, we
evaluate the poisoned data generated by the attack against
an end-to-end ASR system, designed specifically for the task
of keyword spotting on the Speech Commands dataset. Our
results in Section IV-G show that although the poison samples
of VENOMAVE are not crafted for end-to-end systems, they
remain viable and can be a potential threat to such systems.

6) Hearing Thresholds: Hearing thresholds have shown to
be effective for adversarial examples, however, in the case of
poisoning, we observe that their effect is less distinct. One
main reason may be that in contrast to adversarial examples,
where the complete file is modified, our modifications for the
poison utterances are limited to short sequences.

VI. RELATED WORK

In the following, we discuss related work on attacks against
machine learning and ASR systems.

1) Adversarial Examples: Adversarial examples are care-
fully crafted inputs that are perturbed by adding imperceptible
noise to fool a machine learning model [8], [41]. Such pertur-
bations are calculated using the gradients of an optimization
problem that is defined on the victim network, or surrogate
networks, if the victim network is unknown. Initial work
on adversarial attacks focused on the space of images [8],
[17]. Later, similar evasion attacks were shown to exist in the
audio domain, where generating adversarial examples is more
challenging due to time dependencies that exist in the ASR
systems [12], [34], [35], [44].

2) Backdoor Attacks: For a backdoor attack, an adversary
manipulates the victim model by imprinting training samples
with a specific pattern (trigger) and the target label to train
the model to become sensitive to this pattern [18]. During
inference, the attacker can then cause a misclassification by
injecting the trigger into any input example. By using ultrasonic
triggers, the feasibility of such an attack against ASR was
recently demonstrated in a technical report by Koffas et al.
[23]. In contrast to our work and similar to evasion attacks,
however, backdoor attacks require the modification of test

samples during inference, which is not always applicable in
real-world scenarios.

3) Training-Time Poisoning Attacks: Closest to our work
are training-time poisoning attacks [2], [15], [19], [37], [49]
against image classification, wherein the adversary crafts poison
images—with no control over the labeling process—to achieve
the system’s misbehavior for specific target inputs. There
exist major limitations with these attacks, which hinder their
application to ASR systems. First, these attacks focus on
transfer learning, which is not a common training practice
for speech recognition; ASR systems are typically trained from
scratch. Second, they assume that the victim does not use
dropout during the fine-tuning process, while dropout is often
enabled in training neural networks from scratch. Furthermore,
unlike image classification, the recognition process of ASR is
based on time series signals (i. e., the waveform audio signal).
Consequently, these attacks cannot directly be applied to speech-
based systems.

4) Countermeasures: Although several automated defenses
have been proposed [13], [28], [31], they can typically
be evaded by an adaptive attacker [24], [36]. One line of
possible defenses focus on poison detection and removing
them from the train set. This usually happens by employing
some neighborhood conformity tests or outlier detection, either
on the data itself or in the latent space [31]. This type of
detection, however, requires access to the training data, which
is not always given (e. g., in a federated learning setting). Most
recent defenses also consider retrospective countermeasures
like forensic-inspired approaches [39]. Their strategy is to
detect the origin of the poisoned data after a successful attack,
and, therefore, cannot prevent harm beforehand.

Other defenses try to detect poisoned models [13], [28],
[31]. However, these sanitization-based defenses may be
easily leveraged by an attacker who is aware of the specific
defense mechanism, as they are attack-specific [24], [36]. More
importantly, most defenses require clean reference data to
sanitize the training data. The distribution of such clean data
needs to be close to the distribution of the training data, which
is often not realistic.

VII. CONCLUSIONS

In this paper, we present VENOMAVE, the first training-
time poisoning attack against speech recognition. In a series
of experiments, we demonstrate VENOMAVE’s efficacy and
evaluate the attack under different attack settings and for various
attack parameters. We tested single and multi-word replacement
attacks and investigated the effect of an enlarged language
model. The attack remains viable in an over-the-air scenario,
with limited knowledge about the victim model, and transfers
between different speech recogntion architectures. Finally, we
verify with a user study that the majority of poison samples are
clean-label, which renders a manual verification of the training
data ineffective. In summary, we show with VENOMAVE that
data poisoning of ASR systems poses a real threat that needs
to be considered.

ACKNOWLEDGMENTS

We would like to thank our reviewers for their valuable
comments and input to improve our paper. This material is
based upon work partially supported by NSF under Award
#CNS-2107101 and by a gift from Intel, Corp. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily
reflect the views of NSF or Intel. Moreover, this work
was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy – EXC 2092 CASA – 390781972.

REFERENCES

[1] Hadi Abdullah, Kevin Warren, Vincent Bindschaedler, Nicolas Papernot,
and Patrick Traynor. SoK: The Faults in our ASRs: An Overview of
Attacks against Automatic Speech Recognition and Speaker Identification
Systems. In IEEE Symposium on Security and Privacy (S&P), 2020.

[2] Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel,
and Giovanni Vigna. Bullseye polytope: A scalable clean-label poisoning
attack with improved transferability. In IEEE Symposium on Security
and Privacy (S&P), 2020.

[3] David Leroy Alice Coucke, Joseph Dureau and Sébastien Maury. On-
device voice control on sonos speakers, May 2022. https://tech-blog.sonos.
com/posts/on-device-voice-control-on-sonos-speakers/, as of December
19, 2022.

[4] Jont B. Allen and David A. Berkley. Image method for efficiently
simulating small-room acoustics. The Journal of the Acoustical Society
of America, 1979.

[5] Sercan O Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew
Gibiansky, Chris Fougner, Ryan Prenger, and Adam Coates. Convolu-
tional recurrent neural networks for small-footprint keyword spotting. In
Interspeech, 2017.

[6] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. How to backdoor federated learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[7] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin
Calo. Analyzing federated learning through an adversarial lens. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[8] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim
Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks
against machine learning at test time. In Joint European conference on
machine learning and knowledge discovery in databases, 2013.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks
against support vector machines. In International Conference on Machine
Learning (ICML), 2012.

[10] Douglas R. Campbell, Emmanuel Vincent, and Sunit Sivasankaran.
Python rir simulator, October 2021. https://github.com/sunits/rir
simulator python, as of December 19, 2022.

[11] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah
Sherr, Clay Shields, David Wagner, and Wenchao Zhou. Hidden voice
commands. In USENIX Security Symposium, 2016.

[12] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted
attacks on speech-to-text. In IEEE Security and Privacy Workshops
(SPW), 2018.

[13] Henry Chacon, Samuel Silva, and Paul Rad. Deep learning poison data
attack detection. In 2019 IEEE 31st International Conference on Tools
with Artificial Intelligence (ICTAI), pages 971–978. IEEE, 2019.

[14] Sina Däubener, Lea Schönherr, Asja Fischer, and Dorothea Kolossa.
Detecting adversarial examples for speech recognition via uncertainty
quantification. In Conference of the International Speech Communication
Association (INTERSPEECH), 2020.

[15] Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin
Taylor, Michael Moeller, and Tom Goldstein. Witches’ brew: Industrial
scale data poisoning via gradient matching. In International Conference
on Learning Representations (ICLR), 2020.

[16] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi
Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and Tom Goldstein.
Dataset security for machine learning: Data poisoning, backdoor attacks,
and defensess. Computing Research Repository (CoRR), abs/2012.10544,
2021.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[18] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
Computing Research Repository (CoRR), abs/1708.06733, 2017.

[19] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom
Goldstein. Metapoison: Practical general-purpose clean-label data
poisoning. Computing Research Repository (CoRR), abs/2004.00225,
2020.

[20] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry. Adversarial examples are not
bugs, they are features. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[21] ISO Central Secretary. Information Technology – Coding of Moving
Pictures and Associated Audio for Digital Storage Media at Up to 1.5
Mbits/s – Part3: Audio. Standard 11172-3, International Organization
for Standardization, 1993.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. Computing Research Repository (CoRR), abs/1412.6980,
2014.

[23] Stefanos Koffas, Jing Xu, Mauro Conti, and Stjepan Picek. Can
you hear it? backdoor attacks via ultrasonic triggers. arXiv preprint
arXiv:2107.14569, 2021.

[24] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data
poisoning attacks break data sanitization defenses. arXiv preprint
arXiv:1811.00741, 2018.

[25] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew
Marshall, Mario Goertzel, Andi Comissoneru, Matt Swann, and Sharon
Xia. Adversarial machine learning-industry perspectives. In IEEE Security
and Privacy Workshops (SPW), 2020.

[26] Kevin A. Lenzo. Carnegie Mellon Pronouncing Dictionary (CMUdict) -
Version 0.7b, November 2014. http://www.speech.cs.cmu.edu/cgi-bin/
cmudict, as of December 19, 2022.

[27] R. Gary Leonard and George Doddington. Tidigits ldc93s10. Linguistic
Data Consortium, 1993.

[28] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning:
Defending against backdooring attacks on deep neural networks. In
International Symposium on Research in Attacks, Intrusions, and
Defenses, pages 273–294. Springer, 2018.

[29] Samuel Myer and Vikrant Singh Tomar. Efficient keyword spotting using
time delay neural networks. arXiv preprint arXiv:1807.04353, 2018.

[30] J. Omura. On the Viterbi decoding algorithm. IEEE Transactions on
Information Theory, 1969.

[31] Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil
Feizi, Tom Goldstein, and John P Dickerson. Deep k-nn defense against
clean-label data poisoning attacks. In European Conference on Computer
Vision, pages 55–70. Springer, 2020.

[32] Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, and Colin
Raffel. Imperceptible, robust, and targeted adversarial examples for
automatic speech recognition. In International Conference on Machine
Learning (ICML), 2019.

[33] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele
Cornell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdel-
wahab Heba, Jianyuan Zhong, Ju-Chieh Chou, Sung-Lin Yeh, Szu-Wei
Fu, Chien-Feng Liao, Elena Rastorgueva, François Grondin, William
Aris, Hwidong Na, Yan Gao, Renato De Mori, and Yoshua Bengio.
SpeechBrain: A general-purpose speech toolkit, 2021. arXiv:2106.04624.

[34] Lea Schönherr, Thorsten Eisenhofer, Steffen Zeiler, Thorsten Holz, and
Dorothea Kolossa. Imperio: Robust over-the-air adversarial examples
for automatic speech recognition systems. In Annual Computer Security
Applications Conference (ACSAC), 2020.

[35] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and
Dorothea Kolossa. Adversarial attacks against automatic speech recog-
nition systems via psychoacoustic hiding. Symposium on Network and
Distributed System Security (NDSS), 2018.

[36] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson,
and Tom Goldstein. Just how toxic is data poisoning? a unified benchmark
for backdoor and data poisoning attacks. In International Conference on
Machine Learning, pages 9389–9398. PMLR, 2021.

[37] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph
Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! Targeted
clean-label poisoning attacks on neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

https://tech-blog.sonos.com/posts/on-device-voice-control-on-sonos-speakers/
https://tech-blog.sonos.com/posts/on-device-voice-control-on-sonos-speakers/
https://github.com/sunits/rir_simulator_python
https://github.com/sunits/rir_simulator_python
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

[38] Changhao Shan, Junbo Zhang, Yujun Wang, and Lei Xie. Attention-based
end-to-end models for small-footprint keyword spotting. arXiv preprint
arXiv:1803.10916, 2018.

[39] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y. Zhao.
Poison forensics: Traceback of data poisoning attacks in neural networks.
In USENIX Security Symposium, 2022.

[40] Stanley Smith Stevens, John Volkmann, and Edwin B Newman. A scale
for the measurement of the psychological magnitude pitch. The Journal
of the Acoustical Society of America, 1937.

[41] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing Prop-
erties of Neural Networks. In International Conference on Learning
Representations (ICLR), 2014.

[42] Igor Szöke, Miroslav Skácel, Ladislav Mošner, Jakub Paliesek, and Jan
Černockỳ. Building and evaluation of a real room impulse response
dataset. IEEE Journal of Selected Topics in Signal Processing, 13(4):863–
876, 2019.

[43] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu.
Data poisoning attacks against federated learning systems. In European
Symposium on Research in Computer Security, 2020.

[44] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. Cocaine
noodles: exploiting the gap between human and machine speech
recognition. In USENIX Security Symposium, 2015.

[45] Lionel Sujay Vailshery. Number of digital voice assistants in use
worldwide from 2019 to 2024, April 2020. https://www.statista.
com/statistics/973815/worldwide-digital-voice-assistant-in-use/, as of
December 19, 2022.

[46] Dong Wang, Xiaodong Wang, and Shaohe Lv. An overview of end-to-end
automatic speech recognition. Symmetry, 2019.

[47] Pete Warden. Speech commands: A dataset for limited-vocabulary speech
recognition. Computing Research Repository (CoRR), abs/1804.03209,
2018.

[48] Hiromu Yakura and Jun Sakuma. Robust audio adversarial example
for a physical attack. In International Joint Conference on Artificial
Intelligence, 2019.

[49] Chen Zhu, W Ronny Huang, Ali Shafahi, Hengduo Li, Gavin Taylor,
Christoph Studer, and Tom Goldstein. Transferable clean-label poisoning
attacks on deep neural nets. In International Conference on Machine
Learning (ICML), 2019.

[50] Eberhard Zwicker and Hugo Fastl. Psychoacoustics: Facts and Models.
Springer, third edition, 2007.

VIII. APPENDIX

A. Psychoacoustic Modeling

Recent adversarial attacks against ASR systems [32], [35]
use psychoacoustic hearing thresholds to hide modifications
of the input audio signal within inaudible ranges. By using
hearing thresholds, we can limit audible distortions. These
thresholds define how dependencies between certain frequencies
can mask, i.e., make inaudible, parts of an audio signal. In
essence, we guide VENOMAVE to hide malicious noise in these
inaudible parts. At each step of the poison crafting, we scale the
gradients of the poison audio signal (calculated via minimizing
Equation 2) with scaling factors that limit audible distortions.
Since human thresholds alone are tight, the scaling factors are
allowed for differing from the thresholds by a margin of Λ (in
dB). The higher Λ, the more audible noise is allowed to be
added by the attack.

In the following, we discuss how we compute the scaling
factors. First, we compute the power spectrum of the difference
D between the poison signal spectrum Υ and the original signal
spectrum O for all times t and frequencies q as the following:

D(t, q) = 20× log10
|Υ(t, q)−O(t, q)|

maxt,q(|O|)
,∀t, q.

Then, we compute the audible difference (in dB) for all
times t and frequencies q via

ζ(t, q) = D− H,

where H is the computed human hearing thresholds based on the
psychoacoustic model of MPEG-1 [21]. Since the thresholds H
are tight, we allow VENOMAVE to differ from the hearing
thresholds by a margin of Λ (in dB). In particular, we calculate
the matrix ζ∗ for all times t and frequencies q as

ζ∗(t, q) =

{
H(t, q) + Λ−D(t, q) if H(t, q) + Λ ≥ D(t, q)

0 else

where we clip the negative values to zero for the time-frequency
bins that we cross the thresholds H + Λ. We then normalize
the matrix ζ∗ to values between zero and one via

ζ̂(t, q) =
ζ∗(t, q)−mint,q(ζ∗)

maxt,q(ζ∗)−mint,q(ζ∗)
,∀t, q.

We also compute a fixed scaling factor by normalizing the
hearing thresholds H to values between zero and one via

Ĥ(t, q) =
H(t, q)−mint,q(H)

maxt,q(H)−mint,q(H)
,∀t, q.

Putting the scaling factors ζ̂ and Ĥ together, the gradient of
∇X computed via Equation 2 will be scaled as the following

∇X(t,q) := ∇X(t,q) · ζ̂(t, q) · Ĥ(t, q),∀t, q.
This scaling happens between the Discrete Fourier Transform
(DFT) and the magnitude step in the computational graph.

IX. REVIEWS FROM PRIOR SUBMISSION

We have submitted this work to USENIX Security 2023, for
which we augmented our extensive set of experiments with
more experiments. Most importantly, we added the evaluation
of our poison samples against the publicly available, end-
to-end speech toolkit SpeechBrain. In the USENIX Security
2023 submission, reviewers raised valid concerns, due to
the lack of details in our text. We received valuable and
constructive comments, which indeed helped us to improve our
paper. Therefore, for the current submission, we focus on the
presentation of the paper to address major concerns that were
raised by the reviewers. In the following, we discuss all the
major improvements. For reference, we attached the integral
version of the reviews from USENIX Security 2023.

Experimental Setup Details. In general, for each of our
experiments, before discussing results, we now elaborate more
on our experimental setup, and we provide all the details in the
text. We also revised the description of the presented results
to make sure that all required information is provided.

Specific Challenges of Poisoning Speech Recognition Sys-
tems. In the prior submission, our discussion of why attacking
speech recognition systems is more challenging than attacking
CV was too high-level and lacking details about how these
systems operate. In the current version, we added an explanation
why poisoning these systems is harder and fundamentally

https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/

different in comparison to previously studied attacks on systems
such as image classifiers.

Methodology Description. Reviewers pointed out that our
description in Algorithm 1 is not clear in some parts, and it
is hard to cross-match Algorithm 1 with the main text of the
paper. For this submission, we updated the specification of
Algorithm 1 to address these issues.

	Introduction
	Technical Background
	Method
	Threat Model
	VenoMave Algorithm
	Sequence Selection
	Poison Selection
	Poison Crafting

	Evaluation
	Metrics
	Attack Success Rate
	Clean Test Accuracy
	Segmental Signal-to-Noise Ratio (SNRseg)

	 Attack Parameters
	Experimental Setup
	Results

	Limited-Knowledge Adversary
	Model Architecture and Parameters
	Training Dataset

	Multi-Word Replacement Attack
	Speech Commands Dataset
	Over-The-Air Attack
	Transferability
	User Study
	Psychoacoustic Modeling
	Transcription Test

	Discussion
	Attack Parameters
	Poison Budget & Surrogate Models
	Target Selection
	Sequence Selection

	Clean Test Accuracy
	Practical Considerations
	Clean-Label Poison Utterances
	Limited Vocabulary
	Fine-Tuning
	Over-the-Air
	Transferability To End-To-End Keyword Spotting
	Hearing Thresholds

	Related Work
	Adversarial Examples
	Backdoor Attacks
	Training-Time Poisoning Attacks
	Countermeasures

	Conclusions
	References
	Appendix
	Psychoacoustic Modeling

	Reviews From Prior Submission

